Note:

(1) 8

(1) x - 3 = 0

(1) $1.5 \text{ cm}^2/\text{sec}$

www.mathstimes.com

(i) All questions are compulsory. (ii) Each question carries one mark.

1. The polar form of the complex number $(i^{25})^3$ is

(1) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$ (2) $\cos \pi + i \sin \pi$

3. If $Z_1 = a + ib$, $Z_2 = -a + ib$ then Z_1 – Z_2 lies on (1) real axis (2) imaginary axis

(2) 6

(2) x + 3 = 0

 $40 \times 1 = 40$

MODEL **EXAMINATIO**

PART III - MATHEMATICS

[English Version]

Time allowed: 3 Hours]	[Maximum Marks: 200

SECTION - A

(3) $\cos \pi - i \sin \pi$ (4) $\cos \frac{\pi}{2} - i \sin \frac{\pi}{2}$

(3) the line y = x (4) the line y = -x

(4) 2

(iii) Choose the most suitable answer from the given four alternatives.

5. The tangents at the end of any focal chord to the parabola $y^2 = 12x$ intersect on the line.

6. The eccentricity of the hyperbola whose latus rectum is equal to half of its conjugate axis is

2. If ω is a cube root of unity then the value of $(1 - \omega + \omega^2)^4 + (1 + \omega - \omega^2)^4$ is (1) 0 (2) 32 (3) -16

4. The length of the latus rectum of the parabola $y^2 - 4x + 4y + 8 = 0$ is

	$(1) \frac{\sqrt{3}}{2}$	(2) $\frac{5}{3}$	(3) $\frac{3}{2}$	(4) $\frac{\sqrt{5}}{2}$
7.		e asymptotes of the hyper	_	
	$(1) \frac{\pi}{3}$	$(2) \frac{\pi}{3} or \frac{2\pi}{3}$	$(3) \frac{2\pi}{3}$	$(4) -\frac{2\pi}{3}$
8.	The angle between the	e curves $\frac{x^2}{25} + \frac{y^2}{9} = 1$ and	$\frac{x^2}{8} - \frac{y^2}{8} = 1$ is	
	$(1) \frac{\pi}{4}$	$(2) \frac{\pi}{3}$	$(3) \frac{\pi}{6}$	$(4) \frac{\pi}{2}$
9.	If the length of the d	iagonal of a square is ir	acreasing at the rate of 0.1	cm /sec. What is the rate of
	increase of its area wh	en the side is $\frac{15}{\sqrt{2}}$ cm?		

(2) $3 \text{ cm}^2/\text{sec}$ (3) $3\sqrt{2} \text{ cm}^2/\text{sec}$ (4) $0.15 \text{cm}^2/\text{sec}$

(3) y + 3 = 0

11.	X is	a discrete random	variable	which takes	the va	llues	0, 1, 2 and P(X = 0) =	$=\frac{144}{169}$	$\frac{1}{6}$, P(X = 1) = $\frac{1}{169}$ then
		value of $P(X = 2)$ i						10)	10)
					(2)	2		(4)	143
	(1)	$\frac{145}{169}$	$(2) {169}$		(3)	169		(4)	143 169
			10)			10)			
12.	$\mu_2 =$	20, $\mu_2' = 276$ for a	a discrete	random varia	able X	. Th	en the mean of the ran	ıdom	variable X is
		16	(2) 5			(3)		(4)	
13.	If f(x	(x) is a p.d.f of a no	ormal disti	ribution with	mean	μth	nen $\int_{-\infty}^{\infty} f(x) dx$ is		
	(1)	1	(2) 0.5			(3)	_∞	(4)	0.25
	(1)	1	(2) 0.3		,	(3)	3	(+)	0.23
14.	For a	a standard normal	distribution	on the mean	and va	arian	ice are		
	(1)		(2) 1, 1				μ, σ	(4)	μ , σ^2
	` /	,	, , ,			` /	• /	` /	
15.	The	value of $\left[\frac{-1+i\sqrt{2}}{2} \right]$	$\frac{3}{3}$ $\Big ^{100} + \Big[-\frac{1}{3} \Big]^{100} + $	$\left \frac{1-i\sqrt{3}}{2}\right ^{100}$ is	S				
	(1)	2.	(2) 0	_		(3)	_1	(4)	1
	(1)	_	(2) 0			(3)	1	(1)	1
16.	$\lim_{x \to \infty} x \to \infty$	$ \begin{array}{c} x \cot x \text{ is} \\ 0 \end{array} $							
	(1)		(2) -1		((3)	0	(4)	∞
17.	If x =	$= r \cos \theta, y = r \sin \theta$	θ , then $\frac{\partial}{\partial t}$	$\frac{r}{r}$ is equal to					
			$(2) \sin \theta$			(3)	cos θ	(4)	cosec θ
	(1)	500	(2) 5111 ((3)		(1)	
18.	The	curve $ay^2 = x^2$ (3a)	(x-x) cuts	the y-axis a	t				
		x=-3a, x=0				(3)	x = 0, x = a	(4)	x = 0
	` /	·	` '			` ′	·	` /	
19.	The	value of $\int_{0}^{\pi/2} \frac{\sin x}{1 + \sin x}$	$\frac{-\cos x}{\cos x}dx$	is					
	(1)	π	(2) 0			(2)	π	(4)	_
	(1)	$\frac{\pi}{2}$	(2) 0		•	(3)	4	(4)	π
20.	The	area bounded by t	he line y	x, the x-ax	is , th	e ord	dinates $x = 1$, $x = 2$ is		
		•	_				1	(4)	7
	(1)	$\overline{2}$	(2) $\frac{5}{2}$		((3)	$\frac{1}{2}$	(4)	$\overline{2}$
		_	_				-		_
21.		curved surface are m the centre is	ea of a sph	ere of radius	5, int	terce	pted between two para	allel j	planes of distance 2 and
	(1)	20π	(2) 40π		((3)	10π	(4)	30π
				Г	<u> </u>	140.5			
ww	w.ma	thstimes.com			$2 \left(\underline{I} \right)$	<u>'ims</u>)		

(4) 5

10. If $f(x) = x^2 - 4x - 5$ on [0,3] then the absolute maximum value is
(1) 2 (2) 3 (3) 4

22. If $f(x)$ is even then	$\int_{a}^{a} f(x)dx \text{ is}$									
	$(2) 2\int_{0}^{a} f(x)dx$	$(3) \int_{0}^{a} f(x)dx$	$(4) -2\int\limits_0^a f(x)dx$							
23. Solution of $\frac{dx}{dy} + mx = 0$, where m<0 is										
$(1) x = ce^{my}$	$(2) x = ce^{-my}$	(3) x = my + c	(4) $x = c$							
24. The differential equation obtained by eliminating a and b from $y = ae^{3x} + be^{-3x}$ is										
$(1) \frac{d^2y}{dx^2} + ay = 0$	$(2) \frac{d^2y}{dx^2} - 9y = 0$	$(3) \frac{d^2y}{dx^2} - 9\frac{dy}{dx} = 0$	$(4) \frac{d^2y}{dx^2} + 9x = 0$							
25. The particular integra	al of the differential equation	on $f(D)y = e^{ax}$ where $f(D) =$	$(D - a)g(D), g(a) \neq 0$ is							
(1) me ^{ax}	$(2) \frac{e^{ax}}{g(a)}$	$(3) g(a)e^{ax}$	$(4) \frac{xe^{ax}}{g(a)}$							
26. The order and degree of the differential equation are $\frac{d^2y}{dx^2} + x = \sqrt{y + \frac{dy}{dx}}$										
(1) (2, 1)	(2) (1, 2)	(3) $(2,\frac{1}{2})$	(4) (2, 2)							
27. The number of rows in the truth table of \sim [p \land (\sim q)] is										
(1) 2	(2) 4	(3) 6	(4) 8							
28. The value of [3] $+_{11}$ (1) [0]	([5] + ₁₁ [6]) is (2) [1]	(3) [2]	(4) [3]							
(2) If every element	group can have more than t of a group is its own inver × 2 real matrices forms a gr	rse, then the group is Abelia								

30. In the group $(z_5\text{-}\{[0]\},\,^*5)$, O([3]) is

- (1) 5
- (2) 3

(3) 4

(4) 2

31. If $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = 64$ then $[\vec{a} \ \vec{b} \ \vec{c}]$ is

- (1) 32
- (2) 8

(3) 128

(4) 0

32. The shortest distance of the point (2, 10, 1) from the plane $\vec{r} \cdot (3\vec{i} - \vec{j} + 4\vec{k}) = 2\sqrt{26}$ is

- (1) $2\sqrt{26}$
- (2) $\sqrt{26}$

(3) 2

(4) $\frac{1}{\sqrt{26}}$

33. If $|\vec{a}| = 3, |\vec{b}| = 4$ and $\vec{a}.\vec{b} = 9$ then $|\vec{a} \times \vec{b}|$ is

- (1) $3\sqrt{7}$
- (2) 2

(3) 69

(4) $\sqrt{69}$

34	. The	vector	equation	of a plane	whose	distance	from th	e origin	is P a	nd perpe	endicular	to a unit	vector	ñ
	is													

 $(1) \quad \vec{r}.\vec{n} = p \qquad (2) \quad \vec{r}.\hat{n} = q$

(3) $\vec{r} \times \vec{n} = p$

(4) $\vec{r} \cdot \hat{n} = p$

35. If A is a square matrix of order n then |adjA| is

(1) $|A|^2$

 $(2) |A|^n$

(3) $|A|^{n-1}$

(4) |A|

36. If A is a scalar matrix with scalar $k \neq 0$, of order 3, then A⁻¹ is

(1) $\frac{1}{h^2}I$

(2) $\frac{1}{k^3}I$

(3) $\frac{1}{l_{r}}I$

(4) kI

37. In a system of 3 linear non –homogeneous equation with three unknowns, if $\Delta = 0$ and $\Delta_x = 0$, $\Delta_y \neq 0$ and $\Delta_z = 0$ then the system has

(1) unique solution (2) two solutions

(3) infinitely many solutions (4) no solutions

38. The rank of the matrix $\begin{vmatrix} 2 & -4 \\ -1 & 2 \end{vmatrix}$ is

(1) 1

(3) 0

(4) 8

39. If $\vec{u} = \vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})$, then

(1) u is a unit vector (2) $\vec{u} = \vec{a} + \vec{b} + \vec{c}$

(3) $\vec{u} = \vec{0}$

(4) $\vec{u} \neq \vec{0}$

40. The vectors $2\vec{i} + 3\vec{j} + 4\vec{k}$ and $a\vec{i} + b\vec{j} + c\vec{k}$ are perpendicular when

(1) a=2, b=3, c=-4 (2) a=4, b=4, c=5

(3) a=4, b=4, c=-5 (4) a=-2, b=3, c=4

SECTION - B

Note: (i) Answer any ten questions.

- (ii) Question No.55 is compulsory and choose any nine questions from the remaining.
- (iii) Each question carries six marks.

 $10 \times 6 = 60$

41. If $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$ verify that $(AB)^{-1} = B^{-1} A^{-1}$.

42. Find the rank of the matrices: $\begin{bmatrix} 0 & 1 & 2 & 1 \\ 2 & -3 & 0 & -1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$

43. Angle in a semi-circle is a right angle. Prove by vector method.

Find the centre and radius : $|2\vec{r} + (3\vec{i} - \vec{j} + 4\vec{k})| = 4$

(b) The planes $\vec{r} \cdot (2\vec{i} + \lambda \vec{j} - 3\vec{k}) = 10$ and $\vec{r} \cdot (\lambda \vec{i} + 3\vec{j} + \vec{k}) = 5$ are perpendicular. Find λ .

45. Solve the equation $x^4 - 4x^2 + 8x + 35 = 0$, if one of its roots is $2 + \sqrt{3}i$.

- 46. Express the following in the standard form a + ib: $\frac{i^4 + i^9 + i^{16}}{3 2i^8 i^{10} i^{15}}$
- 47. Find the equation of the two tangents that can be drawn from the point (1, -1) to the hyperbola $2x^2 3y^2 = 6$.
- 48. The luminous intensity I candelas of a lamp at varying voltage V is given by: $I = 4 \times 10^{-4} \text{ V}^2$. Determine the voltage at which the light is increasing at a rate of 0.6 candelas per volt.
- 49. Locate the extreme point on the curve $y = 3x^2 6x$ and determine its nature by examining the sign of the gradient on either side.
- 50. If $u = \log(\tan x + \tan y + \tan z)$ prove that $\sum \sin 2x \frac{\partial u}{\partial x} = 2$
- 51. Evaluate : $\int_{0}^{3} \frac{\sqrt{x} dx}{\sqrt{x} + \sqrt{3 x}}$
- 52. Construct the truth table for $(p \land q) \lor r$.
- 53. Using the truth table to determine whether is statement ((\sim p) v q) v (p \land (\sim q)) is a tautology.
- 54. Find k, μ and σ of the normal distribution whose probability function is given by $f(x) = ke^{-2x^2+4x-2}$
- 55. (a) Solve: $\frac{dy}{dx} = \sin(x+y)$ (OR)
 - (b) The overall percentage of passes in a certain examination is 80. If 6 candidates appear in the examination, what is the probability that at least 5 pass the examination

SECTION - C

Note: (i) Answer any ten questions.

- (ii) Question No.70 is compulsory and choose any Nine questions from the remaining.
- (iii) Each question carries ten marks.

 $10 \times 10 = 100$

- 56. For what values of k, the system of equations kx + y + z = 1, x + ky + z = 1, x + y + kz = 1 have
 - (i) unique solution
- (ii) more than one solution
- (iii) no solution

57. If
$$\vec{a} = 2\vec{i} + 3\vec{j} - \vec{k}$$
, $\vec{b} = -2\vec{i} + 5\vec{k}$, $\vec{c} = \vec{j} - 3\vec{k}$. Verify that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$

58. Find the vector and cartesian equation of the plane passing through the points A (1, -2, 3) and

B (-1, 2, -1) and is parallel to the line
$$\frac{x-2}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
.

59. If $a = \cos 2\alpha + i \sin 2\alpha$, $b = \cos 2\beta + i \sin 2\beta$ and $c = \cos 2\gamma + i \sin 2\gamma$ prove that

(i)
$$\sqrt{abc} + \frac{1}{\sqrt{abc}} = 2\cos(\alpha + \beta + \gamma)$$
 (ii) $\frac{a^2b^2 + c^2}{abc} = 2\cos(\alpha + \beta - \gamma)$

(ii)
$$\frac{a^2b^2+c^2}{abc} = 2\cos 2(\alpha + \beta - \gamma)$$

- 60. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4mts when it is 6mts away from the point of projection. Finally it reaches the ground 12mts away from the starting point. Find the angle of projection.
- 61. A satellite is travelling around the earth in elliptical orbit having the earth at a focus and of eccentricity ½. The Shortest distance that the satellite gets to the earth is 400kms. Find the longest distance that the satellite gets from the earth.
- 62. Find the eccentricity, centre, foci, vertices of the hyperbola $x^2 4y^2 + 6x + 16y 11 = 0$ and draw the diagram
- 63. Find the condition for the curves $ax^2 + by^2 = 1$, $a_1x^2 + b_1y^2 = 1$ to intersect orthogonally.
- 64. A farmer has 2400 feet of fencing and want to fence of a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?
- 65. Trace the curve $y = x^3$.
- 66. Find the area of the region bounded by the ellipse $\frac{x^2}{\Omega} + \frac{y^2}{4} = 1$
- 67. A drug is excreted in a patient's urine. The urine is monitored continuously using a catheter. A patient is administered 10mg of drug at time t = 0, which is excreted at a rate of $-3t^{1/2}$ mg/h(i)What is the general equation for the amount of drug in the patient at time t >0?(ii)When will the patient be drug free?
- 68. Show that the set $G = \{a + b\sqrt{2} / a, b \in Q\}$ is an infinite abelian group with respect to addition.
- 69. If the number of incoming buses per minute at a bus terminus is a random variable having a Poisson distribution with $\lambda = 0.9$, find the probability that there will be
 - Exactly 9 incoming buses during a period of 5 minutes.
 - (ii) Fewer than 10 incoming buses during a period of 8 minutes.
 - (iii) At least 14 incoming buses during a period of 11 minutes.
- 70. (a) Solve: $dx + xdy = e^{-y} \sec^2 y \, dy$ (OR)
 - (b) Derive the formula for the volume of a right circular cone with radius 'r' and height 'h'. |www.mathstimes.com|K.Thirumurugan|PGT Maths|GHSS|Vazhuthavur|Villupuram Dt| For IIT JEE maths to watch YouTube channel:mathstimes_thirumurugan