COME BOOK - CREATIVE ONE MARK QUESTIONS

CHAPTER - I

	(MATRICES AND DETERMINANTS)				
01.	The rank of the matrix $\begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$ is				
	a) 1 b) 2	c) 0	d) 8		
02.	The rank of the matrix $\begin{pmatrix} 7 & -1 \\ 2 & 1 \end{pmatrix}$ is				
	a) 9 b) 2	c) 1	d) 5		
03.	If A and B are matrices conformable to multiplication the	en $(AB)^T$ is			
	a) $A^T B^T$ b) $B^T A^T$ c) AB	d) BA			
04.	$\left(A^{T}\right)^{-1}$ is equal to		(.XT		
	a) A^{-1} b) A^{T}	c) A	d) $\left(A^{-1}\right)^T$		
05.	If $\rho(A)=r$ then which of the following is correct?				
	a) all the minors of order r which does not vanish				
	b) has atleast one minor of order r which does not	vanish .			
	c) A has atleast one (r+1) order minor which vanishes				
	d) all (r+1) and higher order minors should not vanish				
06.	Which of the following is not elementary transformation a) $R_i \leftrightarrow R_j$ b) $R_i \to 2R_i + R_j$? c) $C_i \rightarrow C_j + C_i$	d) $R_i \rightarrow R_i + C_j$		
07.	Equivalent matrices are obtained by				
	a) taking inverses	b) taking transposes			
	c) taking ad joints	d) taking finite number of	elementary transformations		
08.	In echelon form, which of the following is incorrect?				
	a) Every row of A which has all its entries 0 occurs be	low every row which has a i	non-zero entry		
	b) The first non-zero entry in each non-zero row is 1				
	c) The number of zeroes before the first non-zero elem	nent in a row is less than the	e number of such zeroes in the next row		
09.	d) Two rows can have same number of zeroes before If $\Delta \neq 0$ then the system is	the first non-zero entry			
	a) Consistent and has unique solution	b) Consistent and infinitely	many solutions		
10.	c) Inconsistent In the system of 3 linear equations with three unknowns	d) Either consistent or inc s, if $\Delta = 0$ and one of Δ_x ,			
	a) consistent	b) inconsistent			
11.	c) consistent and the system reduces to two equations In the system of 3 linear equations with three unknowns				
	$\Delta \neq 0$ then the system is				
	a) consistent	b) inconsistent			
	and c) consistent the system reduces to two equations		em reduces to a single equation		
12.	In the system of 3 linear equations with three unknowns	· · · · · · · · · · · · · · · · · · ·			
	of $ \Delta_{ {\rm x}} $ or $ \Delta_{ {\rm y}} $ or $ \Delta_{ {\rm z}} $ is non-zero then the system is				
	a) consistent	b) inconsistent			

c) consistent and the system reduces to two equations d) consistent and the system reduces to a single equation

13.	In the system of 3 linear equations with three unkno	wns, if $\Delta=0$ and all 2 x 2 minors of Δ , Δ_x , Δ_y , Δ_z are zeroes and			
	atleast one non-zero element is in Δ then the system is				
	a) consistent	b) inconsistent			
	c) consistent and the system reduces to two equation	ons d) consistent and the system reduces to a single equation			
14.	Every homogeneous system				
	a) is always consistent	b) has only trivial solution			
15.	c) has infinitely many solutions If $\rho(A) = \rho[A, B]$ then the system is	d) need not be consistent			
	a) consistent and has infinitely many solutions	b) consistent and has a unique solution			
16.	c) consistent If $\rho(A) = \rho[A, B]$ = the number of unknowns then the	d) inconsistent the system is			
	a) consistent and has infinitely many solutions	b) consistent and has a unique solution			
17.	c) consistent $\rho(A) \neq \rho(A, B)$ then the system is	d) inconsistent			
	a) consistent and has infinitely many solutions	b) consistent and has a unique solution			
	c) consistent	d) inconsistent			
18.	In the system of 3 linear equations with three unkno	wns $\rho(A) = \rho(A, B) = 1$ then the system			
	a) has unique solution				
	b) reduces to 2 equations and has infinitely many s	olution			
	c) reduces to a single equation and has infinitely ma	any solution			
19.	d) is inconsistent In the homogeneous system with three unknowns,	ho(A) = number of unknowns then the system has			
	a) only trivial solution				
	b) reduces to 2 equations and has infinitely many s	olution			
	c) reduces to a single equation and has infinitely ma	any solution			
20.	d) is inconsistent In the system of 3 linear equations with three unkno	wns, in the non-homogeneous system $\rho(A) = \rho(A, B) = 2$ then the			
	system				
	a) has unique solution				
	b) reduces to 2 equations and has infinitely many s	olution			
	c) reduces to a single equation and has infinitely ma	any solution			
21.	d) is inconsistent In the homogeneous system $\rho(A)$ < the number of	f unknowns then the system has			
	a) only trivial solution	b) trivial solution and infinitely many non-trivial solutions			
	c) only non-trivial solutions	d) no solution			
22.	Cramer's rule is applicable only (with three unknow	ns) when			
	a) $\Delta \neq 0$ b) $\Delta = 0$	c) $\Delta = 0$, $\Delta_x \neq 0$ d) $\Delta_x = \Delta_y = \Delta_z = 0$			
23.	Which of the following statement is correct regarding	g homogeneous system			
	a) always inconsistent				
	b) has only trivial solution				
	c) has only trivial solutions	ont matrix is equal to the number of unknowns			
	d) has only trivial solution only if rank of the coefficient matrix is equal to the number of unknowns				

MATHS TIMES.COM Page 2

(VECTOR ALGEBRA)

The value of $\vec{a} \cdot \vec{b}$ when $\vec{a} = \vec{i} - 2\vec{j} + \vec{k}$ and $\vec{b} = 4\vec{i} - 4\vec{j} + 7\vec{k}$ is 01.

d) 14

a) 19 b) 3 c) -19 The value of $\vec{a} \cdot \vec{b}$ when $\vec{a} = \vec{j} + 2\vec{k}$ and $\vec{b} = 2\vec{i} + \vec{k}$ is 02.

d) 4

a) 2 b) -2 c) 3 The value of $\vec{a} \cdot \vec{b}$ when $\vec{a} = \vec{j} - 2\vec{k}$ and $\vec{b} = 2\vec{i} + 3\vec{j} - 2\vec{k}$ is 03.

d) 6

If $m\vec{i} + 2\vec{j} + \vec{k}$ and $4\vec{i} - 9\vec{j} + 2\vec{k}$ are perpendicular then m is 04.

d) 12

If $5\vec{i} - 9\vec{j} + 2\vec{k}$ and $m\vec{i} + 2\vec{j} + \vec{k}$ are perpendicular then m is

d) $\frac{-16}{5}$

If \vec{a} and \vec{b} are two vectors such that $|\vec{a}| = 4$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 6$ then the angle between \vec{a} and \vec{b} is

b) $\frac{-\pi}{2}$

d) $\frac{\pi}{3}$

The angle between the vectors $3\vec{i} - 2\vec{j} - 6\vec{k}$ and $4\vec{i} - \vec{j} + 8\vec{k}$ is 07.

b) $\sin^{-1}\left(\frac{-34}{63}\right)$ c) $\sin^{-1}\left(\frac{34}{63}\right)$

d) $\cos^{-1} \left(\frac{-34}{63} \right)$

The angle between the vectors $\vec{i} - \vec{j}$ and $\vec{j} - \vec{k}$ is 08.

b) $\frac{-2\pi}{3}$ c) $\frac{-\pi}{3}$

d) $\frac{2\pi}{3}$

The projection of the vector $\overrightarrow{7i} + \overrightarrow{j} - \overrightarrow{4k}$ on $\overrightarrow{2i} + \overrightarrow{6j} + \overrightarrow{3k}$ is

b) $\frac{8}{\sqrt{66}}$

d) $\frac{\sqrt{66}}{2}$

 $\vec{a} \cdot \vec{b}$, when $\vec{a} = 2\vec{i} + 2\vec{j} - \vec{k}$ and $\vec{b} = 6\vec{i} - 3\vec{j} + 2\vec{k}$ is

If the vectors $\overrightarrow{a} = 3\overrightarrow{i} + 2\overrightarrow{j} + 9\overrightarrow{k}$ and $\overrightarrow{b} = \overrightarrow{i} + m\overrightarrow{j} + 3\overrightarrow{k}$ are perpendicular then m is 12.

a) -15 b) 15 c) 30 f the vectors $\vec{a} = 3\vec{i} + 2\vec{j} + 9\vec{k}$ and $\vec{b} = \vec{i} + m\vec{j} + 3\vec{k}$ are parallel then m is 13.

c) $\frac{-3}{2}$

If \vec{a} , \vec{b} , \vec{c} are three mutually perpendicular unit vectors, then $|\vec{a} + \vec{b} + \vec{c}| =$

d) $\sqrt{3}$

b) 9 c) $3\sqrt{3}$ If $|\vec{a} + \vec{b}| = 60$, and $|\vec{a} - \vec{b}| = 40$ and $|\vec{b}| = 46$ then $|\vec{a}|$ is

d) 11

a) 22 b) 21 Let \vec{u} , \vec{v} and \vec{w} be vector such that \vec{u} + \vec{v} + \vec{w} = $\vec{0}$

	·	→ →.	
	$ \vec{v} = 5 \text{ then } \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w}$		
a) 25	b) -25	c) 5	d) 5
The projection of $\vec{i} - \vec{j}$ or	n z –axis is	-> 4	4) 0
a) 0 The projection of $i+2$	$\overrightarrow{j} - 2 \overrightarrow{k}$ on $2 \overrightarrow{i} - \overrightarrow{j} + 5 \overrightarrow{k}$	c) -1	d) 2
$a)\frac{-10}{\sqrt{30}}$	b) $\frac{10}{\sqrt{30}}$ c) $\frac{1}{3}$	d) $\frac{\sqrt{10}}{30}$	-
The projection of $3\vec{i} + \vec{j}$	$\overrightarrow{j} - \overrightarrow{k}$ on $4\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$ is		
a) $\frac{9}{\sqrt{21}}$	b) $\frac{-9}{\sqrt{21}}$	c) 81	d) $\frac{-81}{\sqrt{21}}$
V 2 1	V 2 1	V 2 1	V21
		vith position vector 2 i -	$\overrightarrow{6j} + 7\overrightarrow{k}$, to the point B, with position
vector $\overrightarrow{3i} - \overrightarrow{j} - 5\overrightarrow{k}$, by a	force $F = i + 3 j - k$ is		
a) 25	b) 26 \overrightarrow{F}	c) 27	d) 28 from (1,1,1) to (2,2,2) along a straightline
		ng the point of application f	rom (1,1,1) to (2,2,2) along a straigntline
is given to be 5 units. The a) -3	value of a is b) 3	c)8	d) -8
If $ \vec{u} = 3$, $ \vec{v} = 4$ and $ \vec{a} $	$\vec{b} \cdot \vec{b} = 9$ then $ \vec{a} \times \vec{b} $ is	0,0	a, c
a) $3\sqrt{7}$	1 1	-) 00	4) (0
, -	b) 63 → → → → → → →	c) 69 → ÷	$d)\sqrt{69}$
The angle between two ve	ctors \vec{a} and \vec{b} if $\left \vec{a} \times \vec{b} \right =$	$a \cdot b$ is	
a) $\frac{\pi}{4}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{6}$	d) $\frac{\pi}{2}$
If $ \vec{a} = 2$, $ \vec{b} = 7$ and $ \vec{a} $	$\vec{a} \times \vec{b} = 3\vec{i} - 2\vec{j} + 6\vec{k}$ the	en the angle between $\overset{ ightharpoonup}{a}$ an	d $ec{b}$ is
a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{6}$	$d)\frac{\pi}{2}$
4	3	O .	2
	e direction ratios are 2,-3, -6		2 ()
a) $\left(\frac{2}{7}, \frac{-3}{7}, \frac{-6}{7}\right)$	b) $\left(\frac{2}{49}, \frac{3}{49}, \frac{-6}{49}\right)$ c) $\left(\frac{\sqrt{2}}{7}\right)$	$\left(\frac{2}{7}, \frac{\sqrt{3}}{7}, \frac{-\sqrt{6}}{7}\right)$ d) $\left(\frac{2}{7}\right)$	$\left(\frac{3}{7},\frac{6}{7}\right)$
	the plane $2x - y + 2z = 5$	are	
a) $2\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$	5	c) $-\frac{1}{3}\left(2\overrightarrow{i}-\overrightarrow{j}+2\overrightarrow{k}\right)$	3
The length of the perpendi	cular from the origin to the p	plane $\overrightarrow{r} \cdot \left(3\overrightarrow{i} + 4\overrightarrow{j} + 12\overrightarrow{k}\right)$	= 26 is
			d) 1 / 2
The distance from the original	b) 26 / 169 in to the plane $\overrightarrow{r} \cdot \left(2 \overrightarrow{i} - \overrightarrow{j} \right)$	$+5\overrightarrow{k}$)=7 is	
a) $\frac{7}{\sqrt{30}}$	$b)\frac{\sqrt{30}}{7}$	c) $\frac{30}{7}$	d) $\frac{7}{30}$
Chord AB is a diameter of	the sphere $\left \overrightarrow{r} - \left(2\overrightarrow{i} + \overrightarrow{j} - \right) \right $	$-6 \overrightarrow{k}$ $= \sqrt{18}$ with coording	nate of A as (3,2,-2) The coordinates of B
ls	'	'	
a) (1 0 10)	b) (-1,0,-10)	c) (-1,0,10)	d) (1,0,-10)
The centre and radius of the	ne sphere $\left \overrightarrow{r} - \left(2\overrightarrow{i} - \overrightarrow{j} + 4 \overrightarrow{j} \right) \right $	$4\overrightarrow{k}$ $= 5$ are	

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31. The centre and radius of the sphere
$$\left| 2\vec{r} + \left(3\vec{i} - \vec{j} + 4\vec{k} \right) \right| = 4$$
 are

a)
$$\left(\frac{-3}{2}, \frac{1}{2}, -2\right)$$
, 4

b)
$$\left(\frac{-3}{2}, \frac{1}{2}, -2\right)$$
 and 2 c) $\left(\frac{-3}{2}, \frac{1}{2}, -2\right)$, 6 d) $\left(\frac{-3}{2}, \frac{1}{2}, -2\right)$ and 5

$$c)\left(\frac{-3}{2},\frac{1}{2},-2\right),6$$

d)
$$\left(\frac{-3}{2}, \frac{1}{2}, -2\right)$$
 and 5

32. The vector equation of a plane passing through a point where P, V is
$$\vec{a}$$
 and perpendicular to a vector \vec{n} is

a)
$$\overrightarrow{r} \cdot \overrightarrow{n} = \overrightarrow{a} \cdot \overrightarrow{n}$$

b)
$$\overrightarrow{r} \times \overrightarrow{n} = \overrightarrow{a} \times \overrightarrow{n}$$
 c) $\overrightarrow{r} + \overrightarrow{n} = \overrightarrow{a} + \overrightarrow{n}$ d) $\overrightarrow{r} - \overrightarrow{n} = \overrightarrow{a} - \overrightarrow{n}$

c)
$$\overrightarrow{r} + \overrightarrow{n} = \overrightarrow{a} + \overrightarrow{n}$$

d)
$$\vec{r} - \vec{n} = \vec{a} - \vec{n}$$

33. The vectors equation of a plane whose distance from the origin is p and perpendicular to a vector
$$\vec{n}$$
 is

a)
$$\vec{r} \cdot \vec{n} = \vec{p}$$

b)
$$\overrightarrow{r} \cdot \widehat{n} = q$$

a)
$$\overrightarrow{r} \cdot \overrightarrow{n} = p$$
 b) $\overrightarrow{r} \cdot \widehat{n} = q$ c) $\overrightarrow{r} \times \overrightarrow{n} = p$ d) $\overrightarrow{r} \cdot \widehat{n} = p$

$$\mathbf{d}) \ \overrightarrow{r} \cdot \widehat{n} = p$$

34. The non-parametric vector equation of a plane passing through a point whose P. V is
$$\vec{a}$$
 and parallel to \vec{u} and \vec{v} is

a)
$$\begin{bmatrix} \vec{r} - \vec{a}, \vec{u}, \vec{v} \end{bmatrix} = 0$$

$$\mathsf{b}) \left[\vec{r}, \vec{u}, \vec{v} \right] = 0$$

b)
$$\begin{bmatrix} \vec{r}, \vec{u}, \vec{v} \end{bmatrix} = 0$$
 c) $\begin{bmatrix} \vec{r}, \vec{a}, \vec{u} \times \vec{v} \end{bmatrix} = 0$

$$\mathsf{d}) \left[\vec{a} , \vec{u} , \vec{v} \right] = 0$$

35. The non parametric vector equation of a plane passing through the point whose P. V s are
$$\vec{a}$$
, \vec{b} and parallel to \vec{v} , is

a)
$$\begin{bmatrix} \vec{r} - \vec{a} & \vec{b} - \vec{a} & \vec{v} \end{bmatrix} = 0$$
 b) $\begin{bmatrix} \vec{r} & \vec{b} - \vec{a} & \vec{v} \end{bmatrix} = 0$ c) $\begin{bmatrix} \vec{a} & \vec{b} & \vec{v} \end{bmatrix} = 0$

b)
$$\begin{vmatrix} \vec{r} & \vec{b} - \vec{a} & \vec{v} \end{vmatrix} = 0$$

c)
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{v} \end{bmatrix} = 0$$

$$\mathsf{d})\begin{bmatrix}\vec{r} & \vec{a} & \vec{b}\end{bmatrix} = 0$$

36. The non-parametric vector equation of a plane passing through three points whose P. Vs are
$$\vec{a}$$
, \vec{b} , \vec{c} is

a)
$$\begin{bmatrix} \vec{r} - \vec{a} & \vec{b} - \vec{a} & \vec{c} - \vec{a} \end{bmatrix} = 0$$
 b) $\begin{bmatrix} \vec{r} & \vec{a} & \vec{b} \end{bmatrix} = 0$

c)
$$\begin{bmatrix} \vec{r} & \vec{b} & \vec{c} \end{bmatrix} = 0$$

$$d) \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$$

a)
$$\begin{bmatrix} \vec{r} - \vec{a} & \vec{b} - \vec{a} & \vec{c} - \vec{a} \end{bmatrix} = 0$$
 b) $\begin{bmatrix} \vec{r} & \vec{a} & \vec{b} \end{bmatrix} = 0$ c) $\begin{bmatrix} \vec{r} & \vec{b} & \vec{c} \end{bmatrix} = 0$ d) $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$ 37. The vector equation of a plane passing through the line of intersection the planes $\vec{r} \cdot \vec{n_1} = q_1$ and $\vec{r} \cdot \vec{n_2} = q_2$ is

a)
$$(\overrightarrow{r} \cdot \overrightarrow{n_1} - q_1) + \lambda (\overrightarrow{r} \cdot \overrightarrow{n_2} - q_2) = 0$$

b)
$$\overrightarrow{r} \cdot \overrightarrow{n_1} + \overrightarrow{r} \cdot \overrightarrow{n_2} = q_1 + \lambda q_2$$

c)
$$\overrightarrow{r} \times \overrightarrow{n_1} + \overrightarrow{r} \times \overrightarrow{n_2} = q_1 + q_2$$

d)
$$\overrightarrow{r} \times \overrightarrow{n_1} - \overrightarrow{r} \times \overrightarrow{n_2} = q_1 + q$$

c)
$$\overrightarrow{r} \times \overrightarrow{n_1} + \overrightarrow{r} \times \overrightarrow{n_2} = q_1 + q_2$$
 d) $\overrightarrow{r} \times \overrightarrow{n_1} - \overrightarrow{r} \times \overrightarrow{n_2} = q_1 + q_2$ 38. The angle between the line $\overrightarrow{r} = \overrightarrow{a} + t \ \overrightarrow{b}$ and the plane $\overrightarrow{r} \cdot \overrightarrow{n} = q$ is connected by the relation.

a)
$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{n}}{q}$$

a)
$$\cos \theta = \frac{\vec{a} \cdot \vec{n}}{q}$$
 b) $\cos \theta = \frac{\vec{b} \cdot \vec{n}}{\left|\vec{b}\right| \left|\vec{n}\right|}$ c) $\sin \theta = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right| \left|\vec{n}\right|}$

c)
$$\sin \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{n}|}$$

d)
$$\sin \theta = \frac{\vec{b} \cdot \vec{n}}{\left| \vec{b} \right| \left| \vec{n} \right|}$$

a)
$$r = \vec{a}$$

b)
$$\vec{r} - \vec{c} = \vec{a}$$

b)
$$\vec{r} - \vec{c} = \vec{a}$$
 c) $|\vec{r}| = |\vec{a}|$ d) $\vec{r} = a$

d)
$$\vec{r} = a$$

CHAPTER - III

COMPLEX NUMBERS

01. The complex number form of
$$\sqrt{-35}$$
 is

a)
$$i\sqrt{35}$$

b)
$$-i\sqrt{35}$$

c)
$$i\sqrt{-35}$$

02. The complex number form of
$$3 - \sqrt{-7}$$
 is

a)
$$-3 + i\sqrt{7}$$

b)
$$3 - i\sqrt{7}$$

c)
$$3 - i7$$

d)
$$3 + i7$$

03. Real and imaginary parts of
$$4-i\sqrt{3}$$
 are

a) 4,
$$\sqrt{3}$$

b) 4,
$$-\sqrt{3}$$

c)
$$-\sqrt{3}$$
, 4

d)
$$\sqrt{3}$$
, 4

04. Real and imaginary parts of
$$\frac{3}{2}i$$
 are

05. The complex conjugate of
$$2 + i\sqrt{7}$$
 is

a)
$$-2 + i\sqrt{7}$$

b)
$$-2 - i\sqrt{7}$$

c)
$$2 - i\sqrt{7}$$

d)
$$2 + i\sqrt{7}$$

		4 :0			
06.	The complex conjugate of		. 4 . 0	. 4 :0	
	,	b) $4 + i 9$	c) $4-i$ 9	d) $-4-i$ 9	
07.	The complex conjugate of	_		<u></u>	
	- / • -	b) $-\sqrt{5}$	c) $i\sqrt{5}$	d) $-i\sqrt{5}$	
08.	The standard form $(a+ib)$				
	a) $4-i$	b) $-4+i$	c) $4+i$	d) $4+4i$	
09.	If $a+ib=(8-6i)-(2i-7)$		are		
10.	a) 8, -15 If $p+iq=(2-3i)(4+2i)$ ther	b) 8, 15 n q is	c) 15, 9	d) 15, -8	
	a) 14	b) -14	c) -8	d) 8	
11.	The conjugate of $(2+i)(3$	-2i) is			
	a) $8-i$	b) $-8-i$	c) $-8+i$	d) $8+i$	
12.	The real and imaginary par	ts of $(2+i)(3-2i)$ are			
13.	a) -1, 8 The modulus values of -2	b) -8, 1 $2-2i$ and $2-3i$	c) 8, -1	d) -8, -1	
		b) $2\sqrt{5}$, $\sqrt{15}$	c) $2\sqrt{2}$, $\sqrt{13}$	d) -4, 1	
14.	The modulus values of -3		o, = v=, v=	2, ., .	
	a) 5, 5	b) $\sqrt{5}, 7$	c) $\sqrt{6}$, 1	d) $\sqrt{13},5$	
15.	The cube roots of unity are				
	a) in G.P. with common rat	tio ω	b) in G.P. with common	_	
	c) in A.P. with common diff	ference ω	d) in A.P. with common	difference ω^2	
16.	The arguments of nth roots	of a complex number differ		4	
	a) $\frac{2\pi}{}$	b) $\frac{\pi}{-}$	c) $\frac{3\pi}{}$	d) $\frac{4\pi}{}$	
	n	n	n	n	
17.	Which of the following state		h\		
	a) negative complex numbc) order relation exist in co		b) order relation does not exist in real numbers d) $(1+i) > (3-2i)$ is meaningless		
10	•	·	u) (1 + t) > (3 - 2t) 10	meaningless	
18.	Which of the following are of $\mathbf{P}_{\mathbf{q}}(\mathbf{Z}) < \mathbf{Z} $:::\	iv) $\overline{(Z^n)} = (\overline{Z})^n$	
	i) $\operatorname{Re}(Z) \leq Z $	ii) $\operatorname{Im}(Z) \ge Z $	iii) $ Z = Z $	(Z) = (Z)	
	a) (i), (ii) = _	b) (ii), (iii)	c) (ii),(iii) and (iv)	d) (i),(iii) and (iv)	
19.	The values of $Z+Z$ is				
	a) $2 \operatorname{Re}(Z)$	b) $Re(Z)$	c) $Im(Z)$	d) $2\operatorname{Im}(Z)$	
20.	The value of $Z - \overline{Z}$ is				
	a) $2 \operatorname{Im}(Z)$ –	b) $2i \operatorname{Im}(Z)$	c) $Im(Z)$	d) $i\operatorname{Im}(Z)$	
21.	The value of ZZ is			. 2	
	a) Z	b) $ Z ^2$	c) 2 Z	d) $2 Z ^2$	
22.	If $ Z-Z_1 = Z-Z_2 $ the	n the locus of Z is			
	a) a circle with centre at the	e origin			

b) a circle with centre at Z_1

c) a straight line passing through the origin

d) is a perpendicular bisector of the line joining $\,Z_1\,$ and $\,Z_2\,$

23	If co	io o	cube	root	٥f	. units /	thon

a)
$$\omega^2 = 1$$

b)
$$1 + \omega = 0$$

c)
$$1 + \omega + \omega^2 = 0$$
 d) $1 - \omega + \omega^2 = 0$

d)
$$1-\omega+\omega^2=0$$

24. The principal value of argZ lies in the interval

a)
$$\left[0, \frac{\pi}{2}\right]$$

b)
$$\left(-\pi,\pi\right]$$

c)
$$[0, \pi]$$

d)
$$(-\pi,0]$$

If Z_1 and Z_2 are any two complex numbers then which one of the following is false 25.

a)
$$Re(Z_1 + Z_2) = Re(Z_1) + Re(Z_2)$$

b)
$$Im(Z_1 + Z_2) = Im(Z_1) + Im(Z_2)$$

c)
$$arg(Z_1 + Z_2) = arg(Z_1) + arg(Z_2)$$

d)
$$|Z_1Z_2| = |Z_1| + |Z_2|$$

a)
$$1 \pm i$$
, $-1 \pm i$

b)
$$\pm i$$
, $1 \pm i$

c)
$$\pm 1$$
, $\pm i$

a)
$$1, \frac{-1 \pm i\sqrt{3}}{2}$$

b)
$$i, -1 \pm \frac{i\sqrt{3}}{2}$$
 c) $1, \frac{1 \pm i\sqrt{3}}{2}$ d) $i, \frac{1 \pm i\sqrt{3}}{2}$

c)
$$1, \frac{1 \pm i\sqrt{3}}{2}$$

d)
$$i, \frac{1 \pm i\sqrt{3}}{2}$$

29. The number distinct values of
$$(\cos\theta + i\sin\theta)^{p/q}$$
 where p and q are non-zero integers prime to each other is

30. The value of
$$e^{i\theta} + e^{-i\theta}$$
 is

a)
$$2\cos\theta$$

b)
$$\cos\theta$$

c)
$$2\sin\theta$$

d)
$$\sin \theta$$

31. The value of
$$e^{i\theta} - e^{-i\theta}$$
 is

a)
$$\sin \theta$$

b)
$$2\sin\theta$$

c)
$$i \sin \theta$$

d)
$$2i \sin \theta$$

32. Geometrical interpretation of
$$Z$$
 is

- a) reflection of Z on real axis
- b) reflection of Z on imaginary axis
- c) rotation of Z about origin
- d) rotation of Z about origin through $\pi/2$ in clockwise direction

33. If
$$Z_1 = a + ib$$
, $Z_2 = -a + ib$ then $Z_1 + Z_2$ lies on

- a) real axis
- b) imaginary axis
- c) the line y = x
- d) the line y = -x

a)
$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$$

b)
$$(\cos \theta - i \sin \theta)^n = \cos n\theta - i \sin n\theta$$

c)
$$(\sin \theta + i \cos \theta)^n = \sin n\theta + i \cos n\theta$$

d)
$$\frac{1}{\cos\theta + i\sin\theta} = \cos\theta - i\sin\theta$$

Polynomial equation P(x)=0 admits conjugate pairs of roots only if the coefficients are 35.

- a) imaginary
- b) complex
- c) real
- d) either real or complex

Identify the correct statement 36.

- b) Modulus of the product of the complex numbers is equal to sum of the moduli
- c) Arguments of the product of two complex numbers is the product of their arguments
- d) Arguments of the product of two complex numbers is equal to the sum of their arguments

a)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
 b) $\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$

b)
$$\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$$

c)
$$Re(z) = \frac{z+z}{2}$$

c)
$$\text{Re}(z) = \frac{\overline{z} + z}{2}$$
 d) $\text{Im}(z) = \frac{\overline{z} - z}{2i}$

38. If
$$Z_1$$
 and Z_2 are complex numbers then which of the following is meaningful ?

	a) $Z_1 < Z_2$	b) $Z_1 > Z_2$	c) $Z_1 \ge Z_2$	d) $Z_1 \neq Z_2$
39.	Which of the following is in	correct?		
	a) $\operatorname{Re}(Z) \leq Z $	b) $\operatorname{Im}(Z) \leq Z $	c) $Z\overline{Z} = Z ^2$	d) $\operatorname{Re}(Z) \ge Z $
40.	Which of the following is in			.N 7 7 N 7 7
	a) $ Z_1 + Z_2 \le Z_1 + Z_2 $	b) $ Z_1 - Z_2 \le Z_1 + Z_2 $	c) $ Z_1 - Z_2 \ge Z_1 - Z_2 $	a) $ Z_1 + Z_2 \ge Z_1 + Z_2 $
41.	Which of the following is in			
	a) \overline{Z} is the mirror image of b) The polar form of \overline{Z} is			
	c) $-Z$ is the point symmed) The polar form of $-Z$ is			
42.	Which of the following is in	correct?		
	_		rotating the number counter	r clockwise about the origin through an
	b) Multiplying a complex n 90°	umber by -i is equivalent to	o rotating the number clock	wise about the origin through an angle of
	c) Dividing a complex num of 90°	nber by i is equivalent to ro	tating the number counter c	lockwise about the origin through an angle
	d)Dividing a complex numb	per by i is equivalent to rota	ating the number clockwise	about the origin through an angle of 90°
43.	Which of the following is in	correct regarding nth roots	of unity?	
	a) the number of distinct ro		·	
	b) the roots are in G.P. wit	th common ratio $cis \frac{2\pi}{n}$		
	c) the arguments are in A.	P. with common difference	$\frac{2\pi}{n}$	
	d) product of the roots is 0	and the sum of the roots is	s ±1	
44.	Which of the following are			
	i) If n is a positive integer the	$nen (\cos \theta + i \sin \theta)^n = \cot \theta$	os $n\theta + i \sin n\theta$	
	ii) If n is a negative integer	then $(\cos \theta + i \sin \theta)^n = c$	os $n\theta$ – i sin $n\theta$	
	iii) If n is a fraction then CO	s $n heta$ + i sin $n heta$ is one of the	e values of $(\cos \theta + i \sin \theta)^n$	
	iv) If n is a negative integer	then $(\cos \theta + i \sin \theta)^n =$	$\cos n\theta + i \sin n\theta$	
45.	a) (i) , (ii) , (iii), (iv)	b) (i), (iii), (iv)	c) (i), (iv)	d) (i) only e then which of the following are correct?
40.	i) In the parallelogram OAC		chambers in a argana plane	then which of the following are correct:
			= OA.OB and OE makes an	angle $arg(z_1) + arg(z_2)$ with positive
		presents 2 ₁ 2 ₂ where of	- ON.OD and OE makes an	range $\operatorname{arg}(z_1)$ rang (z_2) with positive
	real axis. iii) In the argand parallelog	ram OR'DA D represents :	7 – 7	
	iv) In the argand plane F re	epresents $\frac{z_1}{z_2}$ where $OF = \frac{1}{2}$	$\frac{\partial \mathcal{H}}{\partial B}$ and OF makes an angle	e $arg(z_1)$ – $arg(z_2)$ with positive real
	axis.			
46.	a) (i), (ii), (iii), (iv) If $Z = 0$ then the $arg(Z)$ is	b) (i), (iii), (iv)	c) (i), (iv)	d) (i) only
	a) 0	b) π	c) $\frac{\pi}{2}$	d) indeterminate

CHAPTER IV

- 01. The axis of the parabola $y^2 = 4x$ is
 - - c) x = 1
- d) y = 1

- 02. The vertex of the parabola $y^2 = 4x$ is
- b)(0,1)
- c)(0,0)
- d)(0,-1)

- 03. The focus of the parabola $y^2 = 4x$ is
- b) (1,1)
- c)(0,0)
- d) (1,0)

- The directrix of the parabola $y^2 = 4x$ is 04.
- c) y = 1
- d) x = 1

- The equation of the latus rectum of $y^2 = 4x$ is 05.
- b) y = 1
- c) x = 4
- d) y = -1

- 06. The length of the L.R. of $y^2 = 4x$ is
 - a) 2

c) 1

d) 4

- The axis of the parabola $x^2 = -4y$ is 07.

- c) y = 0
- d) x = 1

- The vertex of the parabola $x^2 = -4y$ is 08.
- b) (0,-1)
- c) (1,0)
- d)(0,0)

- The focus of the parabola $x^2 = -4y$ is 09.
- c)(0,1)
- d) (1,0)

- The directrix of the parabola $x^2 = -4y$ is 10.
- c) y = 1
- d) y = 0

- The equation of the L.R. of $x^2 = -4y$ is 11.
- c) x = 1
- d) y = 1

- The length of the L.R. of $x^2 = -4y$ is 12.

c) 3

d) 4

- The axis of the parabola $y^2 = -8x$ is 13.
 - a) x = 0
- b) x = 2
- c) y = 2
- d) y = 0

- The vertex of the parabola $y^2 = -8x$ is 14.

- c)(0,-2)
- d)(2,-2)

- The focus of the parabola $y^2 = -8x$ is 15.
- b)(0,2)
- c) (-2,0)
- d) (2,0)

- The equation of the directrix of the parabola $y^2 = -8x$ is 16.
- b) x-2 = 0
- c) y 2 = 0
- d) x+2=0

- The equation of the latus rectum of $y^2 = -8x$ is 17.
 - a) y-2=0
- b) y+2 = 0
- c) x 2 = 0
- d) x+2 = 0

- 18. The length of the latus rectum $y^2 = -8x$ is

- b) 6
- c) 4

d) -8

- The axis of the parabola $x^2 = 20y$ is 19.
 - a) y = 5
- b) x = 5
- c) x = 0
- d) y = 0

- The vertex of the parabola $x^2 = 20 y$ is 20.
 - a) (0,5)
- b)(0,0)
- c) (5,0)
- d) (0,-5)

The focus of the parabola $x^2 = 20y$ is 21.

22. The equation of the directrix of the parabola $x^2 = 20y$ is

b)
$$x+5 = 0$$

c)
$$x-5 = 0$$

d)
$$y+5 = 0$$

23. The equation of the latus rectum of the parabola $x^2 = 20y$ is

a)
$$x-5 = 0$$

b)
$$y-5 = 0$$

c)
$$y+5=0$$

d)
$$x+5 = 0$$

The length of the latus rectum of the parabola $x^2 = 20y$ is 24.

25. If the centre of the ellipse is (2,3) one of the foci is (3,3) then the other focus is

The equations of the major and minor axes $\frac{x^2}{\alpha} + \frac{y^2}{4} = 1$ are 26.

a)
$$x = 3$$
, $y = 2$

b)
$$x = -3$$
, $y = -2$

c)
$$x = 0$$
, $y = 0$

d)
$$y = 0, x = 0$$

27.

a)
$$x = \sqrt{3}$$
, $y = 2$

b)
$$x = 0$$
, $y = 0$

c)
$$x = -\sqrt{3}$$
, $y = -2$

d)
$$y = 0$$
, $x = 0$

The lengths of minor and major axes of $\frac{x^2}{9} + \frac{y^2}{4} = 1$ are 28.

The lengths of major and minor axes of $4x^2 + 3y^2 = 12$ are 29.

a) 4.
$$2\sqrt{3}$$

b) 2,
$$\sqrt{3}$$

c)
$$2\sqrt{3}$$
, 4

d)
$$\sqrt{3}$$
, 2

The equation of the directrices of $\frac{x^2}{16} + \frac{y^2}{\alpha} = 1$ are

a)
$$y = \pm \frac{4}{\sqrt{7}}$$

b)
$$x = \pm \frac{16}{\sqrt{7}}$$

c)
$$x = \pm \frac{16}{7}$$

d)
$$y = \pm \frac{16}{\sqrt{7}}$$

The equation of the directrices of $25x^2 + 9y^2 = 225$ are 31.

a)
$$x = \pm \frac{4}{25}$$

b)
$$x = \pm \frac{25}{4}$$
 c) $y = \pm \frac{4}{25}$

c)
$$y = \pm \frac{4}{25}$$

d)
$$y = \pm \frac{25}{4}$$

The equation of the latus rectum of $\frac{x^2}{16} + \frac{y^2}{9} = 1$ are 32.

a)
$$y = \pm \sqrt{7}$$

b)
$$x = \pm \sqrt{7}$$

c)
$$x = \pm 7$$

d)
$$y = \pm 7$$

The equation of the L.R. of $25x^2 + 9y^2 = 225$ are 33.

a)
$$y = \pm 5$$

b)
$$x = \pm 5$$

c)
$$y = \pm 4$$

d)
$$x = \pm 4$$

The length of the L.R. of $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is 34.

The length of the L.R. of $25x^2 + 9y^2 = 225$ is 35.

The eccentricity of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ is 36.

The eccentricity of the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is

a)
$$\sqrt{5}/3$$

b)
$$\sqrt{3}/5$$

The eccentricity of the ellipse $16x^2 + 25y^2 = 400$ is 38.

Centre of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ is 39.

The centre of the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is 40.

The foci the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ are

a)
$$(0, \pm 5)$$

b)
$$(0, \pm 4)$$

$$c)(\pm 5, 0)$$

d)
$$(\pm 4, 0)$$

The foci of the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ are

a)
$$(\pm 5, 0)$$

b)
$$\left(0,\pm\sqrt{5}\right)$$

c)
$$(0, \pm 5)$$

d)
$$\left(\pm\sqrt{5},0\right)$$

The foci of the ellipse $16x^2 + 25y^2 = 400$ are

a)
$$(\pm 3, 0)$$

b)
$$(0,\pm 3)$$

$$c)(0,\pm 5)$$

d)
$$(\pm 5, 0)$$

The vertices of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ are

$$a)(0,\pm 5)$$

b)
$$(0,\pm 3)$$

c)
$$(\pm 5, 0)$$

$$d)(\pm 3, 0)$$

The vertices of the ellipse $\frac{x^2}{4} + \frac{y^2}{\alpha} = 1$ are

$$a)(0,\pm 3)$$

b)
$$(\pm 2, 0)$$

c)
$$(\pm 3, 0)$$

d)
$$(0,\pm 2)$$

The vertices of the ellipse $16x^2 + 25y^2 = 400$ are 46.

a)
$$(0, \pm 4)$$

b)
$$(\pm 5, 0)$$

$$c)(\pm 4, 0)$$

d)
$$(0,\pm 5)$$

If the centre of the ellipse is (4,-2) and one of the foci is (4,2) then the other focus is 47.

The equations of transverse and conjugage axes of the hyperbola $\frac{x^2}{\alpha} - \frac{y^2}{4} = 1$ are 48.

a)
$$x = 2$$
; $y = 3$

b)
$$y = 0$$
; $x = 0$

c)
$$x = 3$$
; $y = 2$

d)
$$x = 0$$
; $y = 0$

The equations of transverse and conjugate axes of the hyperbola $16y^2 - 9x^2 = 144$ are 49.

a)
$$y = 0$$
; $x = 0$

b)
$$x = 3$$
; $y = 4$

c)
$$x = 0$$
; $y = 0$

The equations of transverse and conjugate axes of the hyperbola $144x^2 - 25y^2 = 3600$ are 50.

a)
$$y = 0$$
; $x = 0$

b)
$$x = 12$$
; $y = 5$

c)
$$x = 0$$
; $y = 0$

d)
$$x = 5$$
; $y = 12$

The equation of transverse and conjugate axes of the hyperbola $8y^2 - 2x^2 = 16$ are 51.

a)
$$x = 2\sqrt{2}$$
; $y = \sqrt{2}$

b)
$$x = \sqrt{2}$$
; $y = 2\sqrt{2}$

c)
$$x = 0$$
; $y = 0$

d)
$$y = 0$$
; $x = 0$

The equations of the directrices of the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ are 52.

a)
$$y = \pm \frac{9}{\sqrt{13}}$$

b)
$$x = \pm \frac{13}{9}$$

c)
$$y = \pm \frac{\sqrt{13}}{9}$$

d)
$$x = \pm \frac{9}{\sqrt{13}}$$

The equations of the directrices of the hyperbola $16y^2 - 9x^2 = 144$ are

a)
$$x = \pm \frac{5}{9}$$
 b) $y = \pm \frac{9}{5}$ c) $x = \pm \frac{9}{5}$ d) $y = \pm \frac{5}{9}$

b)
$$y = \pm \frac{9}{5}$$

c)
$$x = \pm \frac{9}{5}$$

d)
$$y = \pm \frac{5}{9}$$

54. The equation of the L.R's of the hyperbola
$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$
 are

a) $v = \pm 13$

b) $y = \pm \sqrt{13}$

c) $x = \pm 13$

d) $x = \pm \sqrt{13}$

The equations of the L.R's of the hyperbola $16y^2 - 9x^2 = 144$ are 55.

b) $x = \pm 5$

c) $v = \pm \sqrt{5}$

d) $x = \pm \sqrt{5}$

The length of the L.R. of $\frac{x^2}{9} - \frac{y^2}{4} = 1$ is 56.

c) 3 / 2

d) 9 / 4

The eccentricity of the hyperbola $\frac{y^2}{9} - \frac{x^2}{25} = 1$ is 57.

c) $\sqrt{34}/3$

d) $\sqrt{34}/5$

The centre of the hyperbola $25x^2 - 16y^2 = 400$ is 58.

c)(4,5)

d)(0,0)

The foci of the hyperbola $\frac{y^2}{\alpha} - \frac{x^2}{25} = 1$ are 59.

a) $(0, \pm \sqrt{34})$

b) $(\pm 34, 0)$

c) $(0, \pm 34)$

d) $(\pm \sqrt{34}, 0)$

The vertices of the hyperbola $25x^2 - 16y^2 = 400$ are 60.

a) $(0, \pm 4)$

b) $(\pm 4, 0)$

 $c)(0,\pm 5)$

 $d)(\pm 5, 0)$

The equation of the tangent at (3,-6) to the parabola $y^2 = 12 x$ is 61.

a) x - y - 3 = 0

b) x + y - 3 = 0

c) x - y + 3 = 0

d) x + y + 3 = 0

The equation of the tangent at (-3,1) to the parabola $x^2 = 9y$ is 62.

a) 3x - 2y - 3 = 0

b) 2x-3y+3=0 c) 2x+3y+3=0

d) 3x + 2y + 3 = 0

The equation of chord of contact of tangents from the point (-3, 1) to the parabola $y^2 = 8x$ is 63. b) 4x + y + 12 = 0 c) 4y - x - 12 = 0

a) 4x - y - 12 = 0

d) 4y - x + 12 = 0

The equation of chord of contact of tangents from (2,4) to he ellipse $2x^2 + 5y^2 = 20$ is 64. d) 5x - y - 5 = 0

a) x - 5y + 5 = 0

b) 5x - y + 5 = 0

c) x + 5y - 5 = 0

The equation of chord of contact of tangents from (5,3) to the hyperbola $4x^2 - 6y^2 = 24$ is 65.

a) 9x+10y+12=0 b) 10x+9y-12=0

c) 9x-10y+12=0 d) 10x-9y-12=0

The combined equation of the asymptotes to the hyperbola $36x^2 - 25y^2 = 900$ is 66.

a) $25x^2 + 36y^2 = 0$

b) $36x^2 - 25y^2 = 0$

c) $36x^2 + 25y^2 = 0$

d) $25x^2 - 36y^2 = 0$

Find the angle between the asymptotes of the hyperbola $24x^2 - 8y^2 = 27$ is 67.

b) $\frac{\pi}{3}$ or $\frac{2\pi}{3}$

68. The point of contact of the tangent y = mx + c and the parabola $y^2 = 4ax$ is

a) $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$

 $b)\left(\frac{2a}{m^2}, \frac{a}{m}\right) \qquad c)\left(\frac{a}{m}, \frac{2a}{m^2}\right) \qquad d)\left(\frac{-a}{m^2}, \frac{-2a}{m}\right)$

The point of contact of the tangent y = mx + c and the ellipse $\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$ is 69.

a) $\left(\frac{b^2}{c}, \frac{a^2m}{c}\right)$

b) $\left(\frac{-a^2m}{c}, \frac{b^2}{c}\right)$ c) $\left(\frac{a^2m}{c}, \frac{-b^2}{c}\right)$ d) $\left(\frac{-a^2m}{c}, \frac{-b^2}{c}\right)$

The point of contact of the tangent y = mx + c and the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{L^2} = 1$ is 70.

$$a) \left(\frac{am^2}{c}, \frac{b^2}{c} \right)$$

b)
$$\left(\frac{a^2m}{c}, \frac{b^2}{c}\right)$$

b)
$$\left(\frac{a^2m}{c}, \frac{b^2}{c}\right)$$
 c) $\left(\frac{-a^2m}{c}, \frac{-b^2}{c}\right)$ d) $\left(\frac{-am^2}{c}, \frac{-b^2}{c}\right)$

d)
$$\left(\frac{-am^2}{c}, \frac{-b^2}{c}\right)$$

- 71. The true statements of the following are
 - i) Two tangents and 3 normal can be drawn to a parabola from a point
 - ii) Two tangents and 4 normal can be drawn to an ellipse from a point
 - iii) Two tangents and 4 normal can be drawn to an hyperbola from a point
 - iv) Two tangents and 4 normal can be drawn to an R.H. from a point
 - a) (i), (ii), (iii) and (iv)
- b) (i), (ii) only

- If ' t_1 ' ' t_2 ' are the extremities of any focal chord of a parabola $y^2 = 4ax$ then t_1 t_2 is 72.
 - a) -1

- The normal at t_1 on the parabola $y^2 = 4ax$ meets the parabola at t_2 then $\left(t_1 + \frac{2}{t_1}\right)$ is 73.

- The condition that the line lx + my + n = 0 may be normal to the ellipse $\frac{x^2}{2} + \frac{y^2}{2} = 1$ is 74.
 - a) $al^3 + 2alm^2 + m^2n = 0$ b) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{\left(a^2 + b^2\right)^2}{n^2}$ c) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{\left(a^2 b^2\right)^2}{n^2}$ d) $\frac{a^2}{l^2} \frac{b^2}{m^2} = \frac{\left(a^2 + b^2\right)^2}{n^2}$
- The condition that the line lx + my + n = 0 may be a normal to the hyperbola $\frac{x^2}{x^2} \frac{y^2}{x^2} = 1$ is 75.
 - a) $al^3 + 2alm^2 + m^2n = 0$ b) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{\left(a^2 + b^2\right)^2}{n^2}$ c) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{\left(a^2 b^2\right)^2}{n^2}$ d) $\frac{a^2}{l^2} \frac{b^2}{m^2} = \frac{\left(a^2 + b^2\right)^2}{m^2}$
- The condition that the line lx + my + x = 0 may be a normal to the parabola $y^2 = 4ax$ is
 - a) $al^3 + 2alm^2 + m^2n = 0$ b) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{\left(a^2 + b^2\right)^2}{m^2}$ c) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{\left(a^2 b^2\right)^2}{m^2}$ d) $\frac{a^2}{l^2} \frac{b^2}{m^2} = \frac{\left(a^2 + b^2\right)^2}{m^2}$
- 77. The chord of contact of tangents from any point on the directrix of the parbola $y^2 = 4ax$ passes through its
 - a) vertex

- The chord of contactof tangents from any point on the directrix of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through its 78.
 - a) vertex
- b) focus
- c) directrix
- The chord of contact of tangents from any point on the directrix of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ passes through its 79.
 - a) vertex
- b) focus
- c) directrix
- d) latus rectum
- The point of intersection of tangents at t_1 and t_2 to the parabola $y^2 = 4ax$ is 80.
 - $a)\left(a\left(t_{1}+t_{2}\right), at_{1}t_{2}\right)$
- b) $(at_1t_2, a(t_1+t_2))$
- c) $(at^2, 2at)$
- $\mathsf{d})\big(at_1t_2\ ,\ a\ \big(t_1-t_2\big)\big)$
- If the normal to the R.H. $xy = c^2$ at t_1 meets the curve again at t_2 then t_1 t_2 = 81.

- The locus of the point of intersection of perpendicular tangents to the parabola $y^2 = 4ax$ is 82.
 - a) latus rectum
- b) directrix
- c) tangent at the vertex d) axis of the parabola
- The locus of the foot of perpendicular from the focus on any tangent to the ellipse $\frac{x^2}{r^2} + \frac{y^2}{h^2} = 1$ is 83.
 - a) $x^2 + y^2 = a^2 b^2$

84.	The locus of the foot of per	pendicular from the focus o	n any tangent to the hyperb	pola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is
	a) $x^2 + y^2 = a^2 - b^2$			
85.	The locus of the foot of per	, ,		•
	a) $x^2 + y^2 = a^2 - b^2$			
86.	The locus of point of interse			
	a) $x^2 + y^2 = a^2 - b^2$		u v	
87.	The locus of point of interse	ection of perpendicular tang	ents to the hyperbola $\frac{x^2}{a^2}$	$\frac{y^2}{h^2} = 1$ is
	a) $x^2 + y^2 = a^2 - b^2$		a	ν
88.	The condition that the line <i>l</i> .	x + mv + n = 0 may be a t	angent to the parabola v^2	=4ax is
	a) $a^2l^2 + b^2m^2 = n^2$		c) $a^2l^2 - b^2m^2 = n^2$	
89.	The condition that the line <i>l</i> .	x + my + n = 0 may be a t	angent to the ellipse $\frac{x^2}{2}$ +	$\frac{y^2}{12} = 1$ is
	a) $a^2l^2 + b^2m^2 = n^2$		••	
90.	The condition that the line			
			и	ν
	a) $a^2l^2 + b^2m^2 = n^2$,	,	,
91.	The condition that the line	dx + my + n = 0 may be a	tangent to the rectangular h	hyperbola $xy = c^2$ is
	a) $a^2l^2 + b^2m^2 = n^2$	b) $am^2 = l n$	c) $a^2l^2 - b^2m^2 = n^2$	$d) 4c^2 lm = n^2$
92.	The foot of a perpendicular	from a focus of the hyperbo	ola on an asymptote lies on	the
	a) Centre	b) corresponding directrix	c) vertex	d) L.R.
		Cŀ	HAPTER V	
01.	Let " h " be the height of the	e tank. Then the rate of cha	nge of pressure " p " of the	tank with respect to height is
		dn		ī
	a) $\frac{dh}{dt}$	b) $\frac{dp}{dt}$	c) $\frac{dh}{dp}$	$d)\frac{dp}{dh}$
02.	If the temperature $\theta^{\circ}C$ of	the certain metal rod of " f"	meters is given by $l = 1 + 0$	$0.00005 \theta + 0.0000004 \theta^2$ then the rate
	of change of $lin m / C^{\circ}$ when a) $0.00013 m/C^{\circ}$	en the temperature is 100° C b) $0.00023 \ m/C^{\circ}$ c) 0.000		033 m/C°
03.	The following graph gives the	he functional relationship be	etween distance and time o	f a moving car in m / sec. The speed of the
	car is			
	a) $\frac{x}{t}$ m/s	b) $\frac{t}{x} m/s$	c) $\frac{dx}{dt} m/s$	d) $\frac{dt}{dx} m/s$
04.	The distance – time relation	nship of a moving body is gi	ven by y = F(t) then the	acceleration of the body is the
	a) gradient of the velocity /	time graph	b) gradient of the distance	e / time graph
	c) gradient of the accelerati	on / distance graph	d) gradient of the velocity	/ distance graph
05.	The distance traveled by a	car in " t " seconds is given		nen the initial velocity and initial
	acceleration respectively ar	re ,		
	a) $\left(-4m/s^2, 4m/s\right)$,		d) $(18.25m/s, 23m/s^2)$
06.	The angular displacement of	of a fly wheel in radius is giv	ven by $\theta = 9t^2 - 2t^3$. The ting	me when the angular acceleration zero is
	a) 2.5 s	b) 3.5 s	c) 1.5 s	d) 4.5 s

07.	Food pockets were droppe $y = \frac{1}{2} gt^2 \left(g = 9.8 \ m/s^2 \right)$			n in "t" seconds is given by		
	a) 19.6 m / sec	b) 9.8 m / sec	c) - 19.6 m / sec	d) - 9.8 m / sec		
08.	An object dropped from the	e sky follows the law of moti	on $x = \frac{1}{2} gt^2 \left(g = 9.8 \ m/s \right)$	2).The acceleration of the object when		
	, ,	b) 9.8 <i>m</i> /sec ²	, ,	, ,		
09.	A missile fired from ground	I level rises x metres vertica	lly upwards in " t " seconds	and $x = t(100 - 12.5t)$. Then the		
	maximum height reached b	by the missiles is				
10.	a) 100m A continuous graph y = f (b) 150 m x) is such that $f'(x) \to \infty$	c) 250 m as $x \rightarrow x_1$, at (x_1, y_1) Then	d) 200m y = f (x) has a		
	a) vertical tangent $y = x_1$		b) horizontal tangent $x =$	x_1		
	c) vertical tangent $x = x_1$		d) horizontal tangent $y =$	y_1		
11.	The curve $y = f(x)$ and	y = g (x) cut orthogonally if	at the point of intersection			
	a) slope of f (x) = slope of	fg(x)	b) slope of f (x) + slope of	of $g(x) = 0$		
	c) slope of f (x) / slope of	g (x) = -1	d) [slope of f(x)] [slope	pe of g (x)] = -1		
12.	The law of the mean can a a) $f(a+h)=f(a)-hf'(a)$	$(u+\theta h)$ $0<\theta<1$	b) $f(a+h)=f(a)+hf'(a)$	$(a+\theta h) \qquad 0 < \theta < 1$		
	c) $f(a+h)=f(a)+hf'(a)$	$(1-\theta h) \qquad 0 < \theta < 1$	d) $f(a+h)=f(a)-hf'(a)$	$(a-\theta h) \qquad 0 < \theta < 1$		
13.	I' Hopital's rule cannot be	applied to $\frac{x+1}{x+3}$ as $x \to 0$ be	cause $f(x) = x + 1$ and $g(x)$	=x+3 are		
	a) not continuous		b) not differentiable			
	c) not in the in determine for		d) in the in determine form	ine form as $x \rightarrow 0$		
14.	If $\lim_{x \to a} g(x) = b$ and f is con	ntinuous at x = b then				
	a) $\lim_{x \to a} g(f(x)) = f(\lim_{x \to a} f(x))$		b) $\lim_{x \to a} f(g(x)) = f \left[\lim_{x \to a} f(g(x)) \right]$	-		
	c) $\lim_{x \to a} f(g(x)) = g \left(\lim_{x \to a} \frac{1}{x} \right)$	f(x)	d) $\lim_{x \to a} f(g(x)) \neq f\left(\lim_{x \to a} \frac{1}{x}\right)$	g(x)		
15.	$\lim_{x \to 0} \frac{x}{\tan x} $ is					
	a)1	b) - 1	c) 0	d) ∞		
16.			·	umbers increased on I. Then		
	a) $f(x_1) \le f(x_2)$ whenever	er $x_1 < x_2 x_1, x_2 \in I$	b) $f(x_1) \ge f(x_2)$ whenever $x_1 < x_2$ $x_1, x_2 \in I$ d) $f(x_1) > f(x_2)$ whenever $x_1 > x_2$ $x_1, x_2 \in I$			
	c) $f(x_1) \le f(x_2)$ whenever	er $x_1 > x_2 x_1, x_2 \in I$	d) $f(x_1) > f(x_2)$ whenever	$\text{ver } x_1 > x_2 x_1 , x_2 \in I$		
17.	7	le function y = f (x) defined	7	ī		
	$a)\frac{dy}{dx} > 0$	$b)\frac{dy}{dx} \ge 0$	c) $\frac{dy}{dx} < 0$	$d)\frac{dy}{dx} \le 0$		
18.	f is a differentiable function	defined on an interval I with	h positive derivative. Then f	is		
19.	a) increasing on <i>I</i> The function $f(x) = x^3$ is	b) decreasing on I	c) strictly increasing on I	d) strictly decreasing on I		
	a) increasing	b) decreasing	c) strictly decreasing	d) strictly increasing		
20.	If the gradient of a curve ch	nanges from positive just be	fore P to negative just after	then "P" is a		
	a) minimum point	b) maximum point	c) inflection point	d) discontinuous point		

21.	The function $f(x) = x^2$ has					
	a) a maximum value at x = 0	0	b) minimum value at x = 0			
22.	c) finite no. of maximum val The function $f(x) = x^3$ has		d) infinite no. of maximum	n values		
	a) absolute maximum	b) absolute minimum	c) local maximum	d) no extrema		
23.	If f has a local extremum at	a and if f'(a) exists then				
	a) f ' (a) < 0	b) f'(a)>0	c) f '(a) = 0	d) f " (a) = 0		
24.	In the following figure the cu	urve y = f(x) is				
	a) concave upwards		b) convex upward			
	c) changes from concavity t	o convexity	d) changes from convexity	y and concavity		
25.	The point that separates the	e convex part of a continuou	ıs curve from the concave ¡	part is		
	a) the maximum point		b) the minimum point			
	c) the inflection point		d) critical point			
26.	f is a twice differentiable fur	nction on an interval I and if	f " (x) > 0for all x in the d	omain I of f then f is		
	a) concave upward	b) convex upward	c) increasing	d) decreasing		
27.	$x = x_0$ is a root of even orde	r for the equation f '(x)=	0 then $x = x_0$ is a			
	a) maximum point	b) minimum point	c) inflection point	d) critical point		
28.	If x ₀ is the x - coordinate of					
	$a) f(x_0) = 0$	$b)f'\big(x_0\big)=0$	$c) f''(x_0) = 0$	$d) f''(x_0) \neq 0$		
29.	The statement " If f is contin	The statement " If f is continuous on a closed interval [a, b] then f attains an absolute maximum value f (c) and ar				
	absolute minimum value f(d) at some number c and d in [a , b] " is					
	a) The extreme value theor	rem	b) Fermat's theorem			
	c) Law of Mean		d) Rolle's theorem			
30.	The statement : " If f has a local extremum (minimum or maximum) at c and if $f'(c)$ exists then $f''(c) = 0$ is					
	a) the extreme value theore	m	b) Fermat's theorem			
	c) Law of Mean		d) Rolle's theorem			
31.	Identify the false statement:					
	a) all the stationary number	s are critical numbers	b) at the stationary point t	he first derivative is zero		
	c) at critical numbers the first	st derivative need not exist	d) all the critical numbers	are stationary numbers		
32.	Identify the correct statement	nt:				
	i) a continuous function has local maximum then it has absolute maximum					
	ii) a continuous function has local minimum then it has absolute minimum					
	iii) a continuous function has absolute maximum then it has local maximum					
	iv) a continuous function ha	s absolute minimum then it	has local minimum			
	a) (i) and (ii)	b) (i) and (iii)	c) (iii) and (iv)	d) (i) , (iii) and (iv)		
33.	Identify the correct statement	nts.				
	i) Every constant function is	_				
	ii) Every constant function is	_				
	iii) Every identity function is	_				
	iv) Every identity function is	_				
	a) (i) , (ii) and (iii)	b) (i) and (iii)	c) (iii) and (iv)	d) (i), (iii) and (iv)		
34.	Which of the following state					
	 a) Initial velocity means velocity 	ocity at t = 0				

MATHS TIMES.COM Page 16

- b) Initial acceleration means acceleration at t = 0
- c) If the motion is upwards, at the maximum height, the velocity is not zero
- d) If the motion is horizontal, v = 0 when the particle comes to rest
- 35. Which of the following statements are correct (m₁ and m₂ are slopes of two lines)
 - i) If the two lines are perpendicular then $m_1m_2=-1$
 - ii) If $m_1 m_2 = -1$ then the two lines are perpendicular
 - iii) If $m_1 = m_2$ then the two lines are parallel
 - iv) If $m_1 = -\frac{1}{m_2}$ then the two lines are perpendicular
 - a) (ii), (iii) and (iv)
- b) (i), (ii) and (iv)
- c) (iii) and (iv)
- d) (i) and (ii)

- 36. One of the conditions of Rolle's theorem is
 - a) f is defined and continuous on (a, b)
- b) f is differentiable on [a, b]

c) f(a) = f(b)

- d) f is differentiable on (a,b)
- 37. If a and b are two roots of a polynomial f (x) = 0 then Rolle's theorem says that there exists atleast
 - a) one root between a and b for f'(x) = 0
- b) two roots between a and b for f'(x) = 0
- c) one root between a and b for f''(x) = 0
- d) two roots between a and b for f''(x) = 0
- 38. A real valued function which is continuous on [a, b] and differentiable on (a, b) then there exists at least one c in
 - a) [a, b] such that f'(c) = 0

- b) (a, b) such that f'(c) = 0
- c) (a, b) such that $\frac{f(b)-f(a)}{b-a}=0$
- d)(a,b) such that $\frac{f(b)-f(a)}{b-a} = f'(c)$
- 39. In the law of mean, the value of '\(\sigma' \) satisfies the condition

- d) $0 < \theta < 1$

- 40. Which of the following statements are correct?
 - i) Rolle's theorem is a particular case of Lagranges law of mean
 - ii) Lagranges law of mean is a particular case of generalized law of mean (Cauchy)
 - iii) Lagranges law of mean is a particular case of Rolle's theorem.
 - iv) Generalized law of mean is a particular case of Lagranges law of mean.
 - a) (ii), (iii)
- b) (iii), (iv)
- c) (i), (ii)
- d) (i), (iv)

CHAPTER VI

- For the function $y = x^3 + 2x^2$ the value of dy when x = 2 and dx = 0.1 is 01.

d) 4

02. If
$$U = x^4 + y^3 + 3x^2y^2 + 3x^2y$$
 then $\frac{\partial u}{\partial x}$ is

- a) $4x^3 + 6xy^2 + 6xy$
- b) $3x^4 + 6x^2y + 3xy^2$
- c) $4x^3 6x^2y + 6xy^2$ d) $4x^3 + 6x^2y^2 + 3xy$

- If u = f (x, y) then with usual notations, $u_{xy} = u_{yx}$ if 03.
 - a) u is continuous

- b) u_x is continuous c) u_y is continuous d) u_x , u_y are continuous
- If u = f (x, y) is a differentiable function of x and y; x and y are differentiable functions of t then

- a) $\frac{du}{dt} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$ b) $\frac{du}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial t}{\partial y} \cdot \frac{\partial y}{\partial t}$ c) $\frac{du}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$ d) $\frac{\partial u}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$
- If f (x, y) is a homogeneous functions of degree n then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} =$
 - a) f

- b) n f
- c) n (n 1) f
- d) n (n + 1) f

06. If
$$u(x, y) = x^4 + y^3 + 3x^2y^2 + 3x^2y$$
 then $\frac{\partial^2 u}{\partial x \partial y}$ is

a)
$$12xy + 6x$$

b)
$$12xy - 6x$$

c)
$$12x^2y - 6x$$

d)
$$12xy^2 - 6x$$

07. If
$$u(x, y) = x^4 + y^3 + 3x^2y^2 + 3x^2y$$
 then $\frac{\partial^2 u}{\partial y \partial x}$ is

a)
$$12xy + 6x$$

b)
$$12xy - 6x$$

c)
$$12x^2y - 6x$$

d)
$$12xy^2 - 6x$$

08. If
$$u(x, y) = x^4 + y^3 + 3x^2y^2 + 3x^2y$$
 then $\frac{\partial^2 u}{\partial x^2}$ is

a)
$$3y^2 + 6x^2y + 3x^2$$
 b) $6y + 6x^2$

b)
$$6y + 6x^2$$

c)
$$12x^2y - 6x$$

c)
$$12x^2y - 6x$$
 d) $12x^2 + 6y^2 + 6y$

09. If
$$u(x, y) = x^4 + y^3 + 3x^2y^2 + 3x^2y$$
 then $\frac{\partial^2 u}{\partial y^2}$ is

a)
$$6y + 6x^2$$

c)
$$12x^2y - 6x$$

d)
$$3y^2 + 6x^2y + 3x^2$$

10. The differential on y of the function
$$y = \sqrt[4]{x}$$
 is

a)
$$\frac{1}{4} x^{-3/4}$$

b)
$$\frac{1}{4} x^{-3/4} dx$$

c)
$$x^{-3/4} dx$$

11. The differential of y if
$$y = x^5$$
 is

b)
$$5x^4 dx$$

c)
$$5x^5 dx$$

12. The differential of y if
$$y = \sqrt{x^4 + x^2 + 1}$$
 is

a)
$$\frac{1}{2}(4x^3+2x)^{-\frac{1}{2}}dx$$

b)
$$\frac{1}{2}(x^4 + x^2 + 1)^{-\frac{1}{2}} (4x^3 + 2x) dx$$

c)
$$\frac{1}{2}(4x^3 + 2x)^{-\frac{1}{2}}$$

d)
$$\frac{1}{2}(x^4+x^2+1)^{-\frac{1}{2}}(4x^3+2x)$$

13. The differential of y if
$$y = \frac{x-2}{2x+3}$$
 is

a)
$$\frac{-7}{(2x+3)^2} dx$$

b)
$$\frac{1}{(2x+3)^2} dx$$

c)
$$\frac{7}{(2x+3)^2} dx$$
 d) $\frac{7}{(2x+3)^2}$

d)
$$\frac{7}{(2x+3)^2}$$

The differential of y if $y = \sin 2x$ is 14.

15. The differential of
$$x \tan x$$
 is

a)
$$\left(x \sec^2 x + \tan^2 x\right)$$

a)
$$\left(x \sec^2 x + \tan^2 x\right)$$
 b) $\left(x \sec^2 x - \tan x\right) dx$ c) $x \sec^2 x dx$ d) $\left(x \sec^2 x + \tan x\right) dx$

c)
$$x \sec^2 x dx$$

d)
$$\left(x \sec^2 x + \tan x\right) dx$$

16. If
$$u(x, y) = x^4 + y^3 + 3x^2y^2 + 3x^2y$$
 then $\frac{\partial u}{\partial y}$ is

a)
$$3y^2 + 6xy + 3x^2$$

a)
$$3y^2 + 6xy + 3x^2$$
 b) $3y^2 + 6xy^2 + 3x^2$

c)
$$3y^2 + 6x^2y + 3x^2$$

d)
$$3y^2 + 6x^2y^2 + 3x^2$$

17. The curve
$$y^2 = x^2 (1-x^2)$$
 is defined only for

a)
$$x \le 2$$
 and $x \ge -2$

b)
$$x \le 1$$
 and $x \ge -1$

c)
$$x \le -1$$
 and $x \ge 1$

d)
$$x < 1$$
 and $x > -1$

18. The curve
$$y^2 = x^2 (1 - x^2)$$
 is symmetrical about

20.

19. The curve
$$y^2 = x^2 (1 - x^2)$$
 has

a) only one loop between
$$x = 0$$
 and $x = 1$

b) two loops between
$$x = -1$$
 and $x = 0$

c) two loops between x = -1 and 0 ; 0 and 1 The curve
$$y^2 = x^2 \left(1 - x^2 \right)$$
 has

a) an asymptote
$$x = -1$$

b) an asymptote
$$x = 1$$

c) two asymptotes
$$x = 1$$
 and $x = -1$

- The curve $y^2(2+x) = x^2(6-x)$ exists for 21.
 - a) $-2 < x \le 6$
- b) $-2 \le x \le 6$
- c) -2 < x < 6
- d) $-2 \le x < 6$

- The x-intercept of the curve $y^2(2+x) = x^2(6-x)$ is 22.

- c) 2

d) -2

- The asymptote to the curve $y^2(2+x) = x^2(6-x)$ is 23.

- c) x = 6
- d) x = -6

- The curve $y^{2}(2+x) = x^{2}(6-x)$ has 24.
 - a) only one loop between x = 0 and x = 6
- b) two loops between x = 0 and x = 6d) two loops between x = -2 and x = 6
- c) only one loop between x = -2 and x = 6The curve $y^2 = x^2 (1-x)$ is defined only for

25.

- b) $x \ge 1$
- c) x < 1
- d) x > 1

- The curve $y^2 = x^2 (1-x)$ is symmetrical about 26.
 - a) y-axis only
- b) x-axis only
- c) both the axes
- d) origin only

- The curve $y^2 = x^2 (1-x)$ has 27.
 - a) an asymptote y = 0
- b) an asymptote x = 1
- c) an asymptote y = 1
- d) no asymptote

- The curve $y^2 = x^2 (1-x)$ has 28.
 - a) only one loop between x = -1 and x = 0
- b) only one loop between x = 0 and x = 1
- c) two loops between x = -1 and x = 1
- d) no loop
- The curve $y^2 = (x-a)(x-b)^2$ a,b>0 and a>b does not exist fro 29.

- c) b < x < a
- d) x = a

- The curve $y^2 = (x-a)(x-b)^2$ is symmetrical about 30.
 - a) origin only
- b) y-axis only
- c) x-axis only
- d) both x and y-axis

- The curve $y^2 = (x-a)(x-b)^2$ a,b>0 and a>b has 31.
 - a) an asymptote x = a
- b) an as asymptote x = b c) an asymptote y = a
- d) no asymptote

- The curve $y^2 = (x-a)(x-b)^2$ a,b>0 and a>b has 32.
 - a) a loop between x = a and x = b

b) two loops between x = a and x = b

- c) two loops between x = 0 and x = b
- d) no loop
- The curve $y^2(1+x)=x^2(1-x)$ is defined for 33.
 - a) $-1 \le x \le 1$
- b) $-1 < x \le 1$

- c) $-1 \le x < 1$
- d) -1 < x < 1

- The curve $y^2(1+x) = x^2(1-x)$ is symmetrical about 34.
- a) both the axes
- b) origin only

- c) y-axis only
- d) x-axis only

- The asymptote to the curve $y^2(1+x)=x^2(1-x)$ is 35.

- c) y = -1
- d) x = -1

b) a loop between x = -1 and x = 0

- The curve $y^{2}(1+x)=x^{2}(1-x)$ has 36.
 - a) a loop between x = -1 and x = 1

c) a loop between x = 0 and x = 1

- d) no loop
- The curve $a^2y^2 = x^2(a^2 x^2)$ is defined for 37.
 - a) $x \le a$ and $x \ge -a$ b) x < a and x > -a
- c) $x \le -a$ and $x \ge a$
- d) $x \le a$ and x > -a

- The curve $a^2y^2 = x^2(a^2 x^2)$ is symmetrical about 38.

- c) both the axes
- d) both the axes and origin

- b) y-axis only a) x-axis only b) y-ax The curve $a^2y^2 = x^2(a^2 - x^2)$ has 39.
 - a) an asymptote x = a
- b) an asymptote x = -a
- c) an asymptote x = 0
- d) no asymptote

40. The curve
$$a^2 y^2 = x^2 (a^2 - x^2)$$
 has

a) a loop between x = a and x = -a

b) two loops between x = -a and x = 0; x = 0 and x = a

c) two loops between x = 0 and x = a

- d) no loop
- The curve $y^2 = (x-1)(x-2)^2$ 41. is not defined for
- b) $x \ge 2$
- c) x < 2 d) x < 1

- The curve $y^2 = (x-1)(x-2)^2$ 42.
- is symmetrical about
- a) both x and y-axis
- b) x-axis only
- c) y-axis only
- d) both the axes and origin

- The curve $y^2 = (x-1)(x-2)^2$ 43.

- b) an asymptote x = 2

- a) an asymptote x = 1
- c) two asymptotes x = 1 and x = 2

d) no asymptote

- The curve $y^2 = (x-1)(x-2)^2$ has 44.
 - a) two loops between x = 0 and x = 2

b) one loop between x = 0 and x = 1

c) one loop between x = 1 and x = 2

d) no loop

CHAPTER VII

01.
$$I_n = \int \sin^n x \, dx$$
 then $I_n =$

a)
$$-\frac{1}{n}\sin^{n-1}x\cos x + \frac{n-1}{n}I_{n-2}$$

c)
$$-\frac{1}{n}\sin^{n-1}x\cos x - \frac{n-1}{n}I_{n-2}$$

b)
$$\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} I_{n-2}$$

d)
$$-\frac{1}{n}\sin^{n-1}x\cos x + \frac{n-1}{n}I_n$$

02.
$$\int_{0}^{2a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
 if

a)
$$f(2a-x)=f(x)$$
 b) $f(a-x)=f(x)$ c) $f(x)=-f(x)$ d) $f(-x)=f(x)$

b)
$$f(a-x)=f(x)$$

c)
$$f(x) = -f(x)$$

$$d) f(-x) = f(x)$$

03.
$$\int_{0}^{2a} f(x) dx = 0$$
 if

a)
$$f(2a-x)=f(x)$$

b)
$$f(2a-x)=-f(x)$$

c)
$$f(x) = -f(x)$$

$$d) f(-x) = f(x)$$

04. If f (x) is an odd function then
$$\int_{-a}^{a} f(x) dx$$
 is

a)
$$2 \int_{0}^{a} f(x) dx$$
 b) $\int_{0}^{a} f(x) dx$

b)
$$\int_{0}^{a} f(x) dx$$

d)
$$\int_{0}^{a} f(a-x) dx$$

05.
$$\int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a - x) dx =$$

a)
$$\int_{0}^{a} f(x) dx$$

a)
$$\int_{0}^{a} f(x) dx$$
 b) 2 $\int_{0}^{a} f(x) dx$

c)
$$\int_{0}^{2a} f(x) dx$$

c)
$$\int_{0}^{2a} f(x) dx$$
 d) $\int_{0}^{2a} f(a-x) dx$

06. If f(x) is even then
$$\int_{-a}^{a} f(x) dx$$
 is

b)
$$2\int_{0}^{a} f(x) dx$$

c)
$$\int_{0}^{a} f(x) dx$$

c)
$$\int_{0}^{a} f(x) dx$$
 d) $-2 \int_{0}^{a} f(x) dx$

07.
$$\int_{0}^{a} f(x) dx \text{ is}$$

a)
$$\int_{0}^{a} f(x-a) dx$$

a)
$$\int_{0}^{a} f(x-a) dx$$
 b) $\int_{0}^{a} f(a-x) dx$

c)
$$\int_{0}^{a} f(2a-x) dx$$

c)
$$\int_{0}^{a} f(2a-x) dx$$
 d) $\int_{0}^{a} f(x-2a) dx$

08.
$$\int_{a}^{b} f(x) dx \text{ is}$$

$$a) 2 \int_{0}^{a} f(x) dx$$

a)
$$2 \int_{0}^{a} f(x) dx$$
 b) $\int_{a}^{b} f(a-x) dx$

$$c) \int_{a}^{b} f(b-x) dx$$

c)
$$\int_{a}^{b} f(b-x) dx$$
 d) $\int_{a}^{b} f(a+b-x) dx$

If n is a positive integer then $\int_{0}^{\infty} x^{n} e^{-ax} dx =$

a)
$$\frac{n!}{a^n}$$

b)
$$\frac{n+1}{a^n}$$

c)
$$\frac{n+1!}{a^{n+1}}$$

d)
$$\frac{n!}{a^{n+1}}$$

If n is odd then $\int_{0}^{\pi/2} \cos^{n} x \, dx$

a)
$$\frac{n}{n-1} \cdot \frac{n-2}{n-3} \cdot \frac{n-4}{n-5} \cdots \frac{\pi}{2}$$

c)
$$\frac{n}{n-1} \cdot \frac{n-2}{n-3} \cdot \frac{n-4}{n-5} \cdot \cdot \cdot \frac{3}{2} \cdot 1$$

b)
$$\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \cdot \cdot \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

d)
$$\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \cdot \cdot \cdot \frac{2}{3} \cdot 1$$

If n is even then $\int_{0}^{\pi/2} \sin^n x \, dx$ is

a)
$$\frac{n}{n-1} \cdot \frac{n-2}{n-3} \cdot \frac{n-4}{n-5} \cdot \cdot \cdot \cdot \frac{\pi}{2}$$

c)
$$\frac{n}{n-1} \cdot \frac{n-2}{n-3} \cdot \frac{n-4}{n-5} \cdot \cdot \cdot \frac{3}{2} \cdot 1$$

b)
$$\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \cdot \cdot \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

d)
$$\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \cdot \cdot \cdot \frac{2}{3} \cdot 1$$

If n is even then $\int_{0}^{\pi/2} \cos^{n} x \, dx$ is

a)
$$\frac{n}{n-1} \cdot \frac{n-2}{n-3} \cdot \frac{n-4}{n-5} \cdot \cdot \cdot \cdot \frac{\pi}{2}$$

c)
$$\frac{n}{n-1} \cdot \frac{n-2}{n-3} \cdot \frac{n-4}{n-5} \cdot \cdot \cdot \frac{3}{2} \cdot 1$$

b)
$$\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \cdot \cdot \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

d)
$$\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \cdot \cdot \frac{2}{3} \cdot 1$$

If n is odd then $\int_{0}^{\pi/2} \sin^{n} x \, dx$ is

a)
$$\frac{n}{n-1} \cdot \frac{n-2}{n-3} \cdot \frac{n-4}{n-5} \cdot \cdot \cdot \cdot \frac{\pi}{2}$$

c)
$$\frac{n}{n-1} \cdot \frac{n-2}{n-3} \cdot \frac{n-4}{n-5} \cdot \cdot \cdot \cdot \frac{3}{2} \cdot 1$$

b)
$$\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \cdot \cdot \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

d)
$$\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \cdot \cdot \cdot \frac{2}{3} \cdot 1$$

 $\int_{0}^{b} f(x) dx =$ 14.

$$a) - \int_{a}^{b} f(x) dx \qquad b) - \int_{b}^{a} f(x) dx$$

b)
$$-\int_{b}^{a} f(x) dx$$

$$c) - \int_{0}^{a} f(x) dx$$

c)
$$-\int_{0}^{a} f(x) dx$$
 d) $2\int_{0}^{b} f(x) dx$

The area bounded by the curve x = g(y) to the right of y - axis and the two lines y = c and y = d is given by 15.

a)
$$\int_{0}^{d} x \ dx$$

b)
$$\int_{0}^{a} x dy$$

c)
$$\int_{0}^{d} y \, dy$$

$$d) \int_{0}^{d} x dx$$

The area bounded by the curve x = f(y), y-axis and the lines y = c and y = d is rotated about y-axis. Then the volume of 16. the solid is

a)
$$\pi \int_{0}^{d} x^{2} dy$$

b)
$$\pi \int_{0}^{d} x^{2} dx$$

c)
$$\pi \int_{0}^{d} y^{2} dx$$
 d) $\pi \int_{0}^{d} y^{2} dy$

$$d) \pi \int_{0}^{d} y^{2} dy$$

The area bounded by the curve x = f(y) to the left of y-axis between the lines y = c and y = d is 17.

a)
$$\int_{0}^{d} x \, dy$$

$$b) - \int_{0}^{d} x \ dy$$

c)
$$\int_{0}^{d} y \ dx$$

c)
$$\int_{0}^{d} y \ dx$$
 d) $-\int_{0}^{d} y \ dx$

The arc length of the curve y = f(x) from x = a to x = b is 18.

$$a) \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \ dx$$

a)
$$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 b) $\int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dx$

c)
$$2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 d) $2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dx$

19. The surface area obtained by revolving the area bounded by the curve y = f(x), the two ordinates x = a, x = b and x-axis,

a)
$$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 b) $\int_{a}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dx$

b)
$$\int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dx$$

c)
$$2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 d) $2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dx$

 $\int_{0}^{\infty} x^5 e^{-4x} dx \text{ is}$

a)
$$\frac{6!}{4^6}$$

b)
$$\frac{6!}{4^5}$$

- c) $\frac{5!}{4^6}$
- d) $\frac{5!}{4^5}$

21. $\int_{0}^{\infty} e^{-mx} x^{7} dx \text{ is}$

a)
$$\frac{m!}{7^m}$$

b)
$$\frac{7!}{m^{7}}$$

c)
$$\frac{m!}{7^{m+1}}$$

d)
$$\frac{7!}{m^8}$$

22. $\int_{0}^{\infty} x^{6} e^{-x/2} dx$

a)
$$\frac{6!}{2^7}$$

b)
$$\frac{6!}{2^6}$$

c)
$$2^6 6!$$

$$d) 2^7 6!$$

 $I_n = \int \cos^n x \, dx$ then $I_n =$

a)
$$-\frac{1}{n}\cos^{n-1}x\sin x + \frac{n-1}{n}I_{n-2}$$

c)
$$\frac{1}{n}$$
cosⁿ⁻¹ x sin $x - \frac{n-1}{n}I_{n-2}$

b)
$$\cos^{n-1} x \sin x + \frac{n-1}{n} I_{n-2}$$

d)
$$\frac{1}{n}$$
cosⁿ⁻¹ $x \sin x + \frac{n-1}{n} I_{n-2}$

CHAPTER VIII

The order and degree of the differential equation $\frac{d^3y}{dx^3} + \left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right) + y = 7$ are

d) 2, 3

The order and degree of the differential equation are $y = 4 \frac{dy}{dx} + 3x \frac{dx}{dy}$ 02.

d) 2,2

The order and degree of the differential equation are $\frac{d^2y}{dx^2} = \left[4 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{4}}$ 03.

a) 2,1

d) 4,2

The order and degree of the differential equation are $(1 + y')^2 = y'^2$ 04.

d) 1,1

The order and degree of the differential equation are $\frac{dy}{dx} + y = x^2$ 05.

b) 1,2

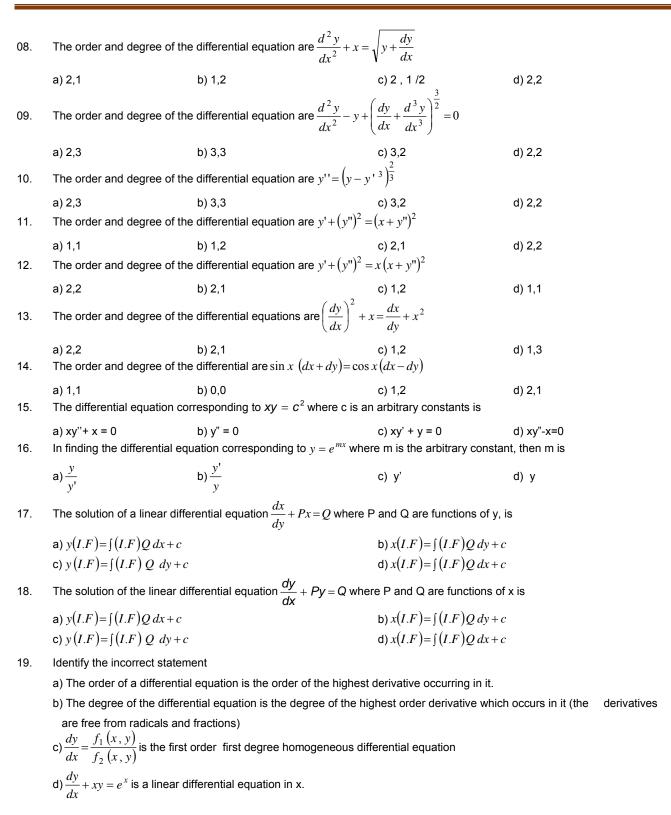
d) 0,1

The order and degree of the differential equation are $y' + y^2 = x$ 06.

a) 2,1

b) 1,1

d) 0,1


The order and degree of the differential equation $y'' + 3y'^2 + y^3 = 0$ are 07.

a) 2,2

b) 2,1

c) 1,2

d) 3,1

CHAPTER IX

01. Which of the following are statements?

MATHS TIMES.COM Page 23

	i.Chennai is the capita	ıl of Tamil Nadu.	ii.The earth is a planet			
	iii.Rose is a flower		iv.Every triangle is an i	sosceles triangle		
	a) all	b) (i) and (ii)	c) (ii) and (iii)	d) (iv) only		
02.	Which of the following	are not statements?				
	i. Three plus four is e	ight	ii. The sun is a planet			
	iii. Switch on the light		iv. Where are you goir	ng ?		
	a) (i) and (ii)	b) (ii) and (iii)	c) (iii) and (iv)	d) (iv) only		
03.	The truth values of the	e following statements are				
	i. Ooty is in Tamilnadu	u and 3 + 4 = 8	ii. Ooty is in Tamilnadu	and 3 + 4 = 7		
	iii. Ooty is in Kerala a	nd $3 + 4 = 7$	iv. Ooty is in Kerala ar	and $3 + 4 = 8$		
	a) F,T,F,F	b) F,F,F,T	c) T,T,F,F	d) T,F,T,F		
04.	The truth values of the	e following statements are				
	i) Chennai is in India o	or $\sqrt{2}$ is an integer.	ii) Chennai is in India o	or $\sqrt{2}$ is an irrational number		
	iii) Chennai is in China	a or $\sqrt{2}$ is an integer	iv) Chennai is in China	or $\sqrt{2}$ is an irrational number		
	a) T F T F	b) T F F T	c) F T F T	d) TTFT		
05.	Which of the following	are not statements?				
	i. All natural numbers	are integers.	ii. A square has five sid	des		
	iii. The sky is blue		iv. How are you?			
	a) (iv) only	b) (i) and (ii)	c) (i) (ii) and (iii)	d) (iii) and (iv)		
06.	Which of the following	are statements?				
	i. 7 + 2 < 10		ii. The set of rational ne	umbers is finite		
	iii. How beautiful you a	are	iv. Wish you all succes	S.		
	(a) (iii) (iv)	b) (i), (ii)	c) (i) , (iii)	d) (ii) , (iv)		
07.	The truth values of the	e following statements are				
	i. All the sides of a rho	i. All the sides of a rhombus are equal in length		ii. $1 + \sqrt{19}$ is an irrational number		
	iii. Milk is white		iv. The number 30 has	four prime factors.		
	a) T T T F	b) T T T T	c) T F T F	d) F T T T		
08.	The truth values of th	e following statements are				
	i) Paris is in France	i	i) sinx is an even function			
	iii) Every square matri	x is non-singular	iv) Jupiter is a planet			
	a) TFFT	b) FTFT	c) FTTF	d) FFTT		
09.	Let p be " Kamala is g	oing to school " and q be " There a	re twenty students in the class	". " Kamala is not going to school or		
	there are twenty stude	ents in the class " stands for				
	a) $p \vee q$	b) $p \wedge q$	c)~ <i>p</i>	$d) \!\sim p \vee q$		
10.	If p stands for the state	ement " Sita likes reading " and q fo	or the statement " Sita likes play	ying ". " Sita likes neither reading not		
	playing " stands for					
	a) $\sim p \land \sim q$	b) $p \land \sim q$	c) $\sim p \wedge q$	d) $p \wedge q$		
11.	If p is true and q is unl					
	a) $\sim p$ is true	b) $p \lor (\sim p)$ is false	c) $p \land (\sim p)$ is true	d) $p \lor q$ is true		
12.	If p is true and q is fals	se then which of the following state	ments is not true?			
	a) $p \rightarrow q$ is false	b) $p \lor q$ is true	c) $p \wedge q$ is false	d) $p \leftrightarrow q$ is true		
13.	Which of the following	is not true?				
	i) Negation of a negati	ion of a statement is the statement	itself			

MATHS TIMES.COM

Page 24

ii) If the last column of its truth table contain only T then it is tautology

	,	ruth table contains only F then it is contained that $p \leftrightarrow q$ is a tautological $p \leftrightarrow q$		
14.	Which of the following are i) $a*b = \min\{a,b\}$ ii) $a*b$		iii) $a*b = a$	iv) $a*b=b$
	a) all	b) (i) , (ii) and (iii)	c) (ii), (iii) and (iv)	d) (iii) , (iv)
15.	'+' is not a binary operation a) N	on b) Z	c) C	d) $Q-\{0\}$
16.	'-' is a binary operation on a) N	b) $Q-\{0\}$	c) $R - \{0\}$	d) Z
17.	'÷' is a binary operation of		a) 7	مار C (0)
18.	a) N	b) R $\{x \in Z \mid x = 5k + 2, k \in Z\}$ represent	c) Z	d) $C - \{0\}$
10.	a) [0]	b) [5]	c) [7]	d) [2]
19.	$[5]$ · $_{12}$ $[11]$ is	r 1	r 1	r 1
20.	a) [55] [3]+ ₈ [7] is	b) [12]	c) [7]	d) [11]
20.	a) $[10]$	b) [8]	c) [5]	d) [2]
21.		,-1,i,-i, the order of -1 is	م) [د]	~/ [-]
22.	a) -1 In the group (G, .), $G=\{1, \dots, G\}$	b) 1 ,–1, i ,– i }, the order of –i is	c) 2	d) 0
23.	a) 2 In the group (G, .), $G = \{1, \dots, G = $	b) 0 , ω , ω^2 , the order of $0(\omega^2)$ is (who	c) 4 ere ω is a cube root of unit	d) 3 y)
24.	a) 2 In the group $(Z_4,+_4)$, order	b) 1 er of $[0]$ is	c) 4	d) 3
25.	a) 1 In the group $\left(Z_4, +_4\right)$, $0\left(\left[\frac{1}{2}\right]\right)$	b) ∞ [3]) is	c) cannot be determined	d) 0
26.	a) 4 In (S,o) , $xoy=x$, x , $y \in s$ t	b) 3 hen 'o' is	c) 2	d) 1
	a) only associative		b) only commutative	
27.	c) associative and commute In $(N,*)$, $x*y = \max\{x, y\}$		d) neither associative nor	commutative
	a) only closed	b) only semi group	c) only a monoid	d) an infinite group
28.	The set of positive even int	tegers, with usual addition forms		
	a) a finite group	b) only a semi group	c) only a monoid	d) an infinite group
29.	•	imbers, with usual addition forms	North a month	d) '- 6'-''
30.	a) a finite group In $(Z_5 - \{\![0]\!], \cdot_5)$ the order	b) only a semi group of $O([3])$ is	c) only a monoid	d) an infinite group
31.	a) 5 In the group (G, .), $G = \{I$	b) 3 , $-1,i,-i\}$, the order of 1 is	c) 4	d) 2
32.	a) 2 In the group (G, .), $G = \{I$	b) 0 , $-1,i,-i\}$, the order of i is	c) 4	d) 1

MATHS TIMES.COM Page 25

33.	a) 2 In the group (G, .), $G = \{1, \dots, G = $	b) 0 ω, ω^2 , ω is cube root of ω	c) 4 unity then $0(\omega)$ is	d) 3
34.	a) 2 In the group (G, .), $G = \{1, \dots, G = $	b) 1 ω, ω^2 , ω is cube root of ω	c) 4 unity then $O(1)$ is	d) 3
35.	a) 2 In the group $(Z_4,+_4)$, 0 ([1	b) 1]) is	c) 4	d) 3
36.	a) 1 In the group $\left(Z_4,+_4\right)$, $0\left(\left[2\right]\right)$	b) ∞ 2]) is	c) can not be determined	d) 4
37.	a) 1 In $(Z_5 - \{\![0]\!], \cdot_5)$ the order of	b) 2 of 0 ([2]) is	c) can not be determined	d) 0
38.	a) 5 In $(Z_5 - \{\![0]\!], \cdot_5)$ the order of	b) 3 of 0 ([4]) is	c) 4	d) 2
39.	a) 5 In $(Z_5 - \{\![0]\!], \cdot_5)$ the order of	b) 3 of 0 ([1]) is	c) 4	d) 2
	a) 1	b) 2	c) 3	d) 4
		СН	IAPTER X	
01.	A discrete random variable	takes		
	a) only a finite number of va	alues	b) all possible values between	veen certain given limits
	c) infinite number of values		d) a finite or countable nu	mber of values
02.	A continuous random variab	ole takes		
	a) only a finite number of va	alues	b) all possible values between	veen certain given limits
	c) infinite number of values	- ()	d) a finite or countable nu	mber of values
03.	If X is a discrete random va		- ()	
	a) $P(X < a)$	$b) 1 - P(X \le a)$	c) 1 - P(X < a)	d) 0
04.	If X is a continuous random			(
	a) $P(X < a)$	b) 1 - P(X > a)	c) $P(X > a)$	$d) 1 - P\left(X \le a - 1\right)$
05.	If X is a continuous random			
	a) $P(a \le X \le b)$	b) $P(a < X \le b)$	c) $P(a \le X < b)$	d) all the three above
06.	A continuous random variable a) $0 \le f(x) \le 1$	()	c) $f(x) \le 1$	d) 0 < f(x) < 1
07.	A discrete random variable a) $0 \le p(x) \le 1$	X has probability, mass fund b) $p(x) \ge 0$	ction p(x), then c) $p(x) \le 1$	d) 0 < p(x) < 1
08.	Mean and variance of binor	nial distribution are		
	a) nq, npq	b) np, \sqrt{npq}	c) np, np	d) np, npq
09.	Which of the following is or i) Symmetrical about the line	• •	al distribution curve? ii) Mean = median = mode	
	iii) Unimodal		iv) Point of inflextion are at $X = \mu$	$\pm\sigma$
	a) (i), (ii) only	b) (ii) , (iv) only	c) (i) , (ii) , (iii) only	d) all
10.	For a standard normal distri			
	a) μ , σ^2	b) μ , σ	c) 0,1	d) 1,1
11.	The p.d.f of the standard no	ormal variate Z is $\varphi(z)$ =	1	
	$a)\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}z^2}$	b) $\frac{1}{\sqrt{2\pi}}e^{-z^2}$	c) $\frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}z^2}$	d) $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$

12. If X is a discrete random variable then which of the following is correct?

a)
$$0 \le F(x) < 1$$

b)
$$F(-\infty)=0$$
 and $F(\infty)\leq 1$

c)
$$P[X = x_n] = F(x_n) - F(x_n - 1)$$

- d) F(x) is a constant function
- 13. If X is a continuous random variable then which of the following is incorrect?

a)
$$F'(x)=f(x)$$

b)
$$F(\infty)=1$$
; $F(-\infty)=0$

c)
$$P[a \le x \le b] = F(b) - F(a)$$

d)
$$P[a \le x < b] \ne F(b) - F(a)$$

14. Which of the following are correct?

i)
$$E(aX + b) = aE(X) + b$$

ii)
$$\mu_2 = \mu_2' - (\mu_1')^2$$

iii)
$$\mu_2$$
 = variance

iv)
$$var(aX + b) = a^2 var(X)$$

- 15. Which of the following is not true regarding the normal distribution?
 - a) skewness is zero

- b) Mean = median = mode
- c) the Points of inflection are at $X = \mu \pm \sigma$
- d) maximum height of the curve is $\frac{1}{\sqrt{2\pi}}$